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Welcome to SBSAT:
a State Based Satisfiability Solver

SBSAT is a software package used primarily for solving instances of a gen-

eralization of the well-known Satisfiability problem. In particular, the problem

solved by SBSAT is the following:

Given: Input variable set V = {v1, ..., vn} of Boolean variables, set
of Boolean functions B = {f1, ..., fm} where, for all i, fi

maps an assignment of values to variables of V to {T, F}.

Result: An assignment of values to variables of V such that, for all
i, fi = T , or unsatisfiable if no such assignment is possible.

If, for all i, fi is a function corresponding to the conjunction of a subset of

variables of V , then the problem is reduced to the well-studied Boolean Satisfia-

bility Problem. If the variables of V are allowed to take arbitrarily many values,

then the problem becomes the well-studied Constraint Satisfaction Problem.

The functions B may be specified in several different ways. But, there is

one canonical input specification format, which we call the canonical form: a

conjunction of a collection of BDDs1. Any recognized user input is translated

to the canonical form, if it is not in that form already. Of course, the user is

free to supply his/her own translation to BDDs which then may be input: in

this way all possible input formats can be accommodated. Specific, supported

input formats are:

• CNF (Conjunctive Normal Form - described in Sections 4.2 and 9.2)

• DNF (Disjunctive Normal Form - described in Section 9.3)

• BDD (SBSAT canonical form - described in Sections 4.3,9.1)

• Smurf (described in Section 9.7)

• Trace (From CMU benchmark examples - described in Section 9.5)

• Prove (Generated by CMU tool BMC - described in Section 9.6)

• XOR (Each conjoint is an XOR of conjoints - see Sections 4.4,9.4)

Examples of how a user might develop a custom translation to the canonical

form from other formats are found in Section 4.8.

1See Page 4 for the definition of BDDs and Section 10.1 for a description.
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For maximum effectiveness, the user should be aware of and know how to

control the three phases of SBSAT execution, shown schematically in Figure 1.

In the first phase an input is read from an input file. The user must decide

which input format to use and build the input file accordingly. There are three

issues here: namely choosing the type of input format, writing the input in a

way that can be exploited by elements of the remaining phases, and keeping

the syntax correct. Format types and syntax are described in Sections 4 and 9.

Comments on writing exploitable input may be found in Section 18. In the

second phase various levels of preprocessing are applied to the input instance

with the intention of producing an internal set of constraints (in canonical form)

that are either logically equivalent 2 or equi-satisfiable 3 to the original and yields

a smaller search space through advanced and intelligent search heuristics and

learning. The user may control this phase using command line switches when

launching the program. Details of the kinds of preprocessing available and their

effects are found in Sections 5.1 and 10 along with examples of their use. In

the third phase the internal form (that is, set of constraints in canonical form)

is searched for a solution. The user must choose one of the ways to perform a

search and the search heuristic which is used to select unassigned variables to be

assigned values. Future versions will allow the user to define a search heuristic

and coordinating preprocessing elements. Choices for searching are:

• SMURF (Default backtracking solver - Section 12.1)

• BDD WalkSAT (an incomplete solver - Section 12.2)

• WVF (Vanfleet’s tinkering solver - Section 12.3)

• Simple (A stripped-down version of the SMURF solver - Section 12.4)

Reasons for choosing one of the above are given in Sections 12.1-12.4. Search

heuristics are used to help control the size of the search space. In the current

version the user may choose one of the following to control the SMURF solver:

• VSIDS (Section 11.3)

• Locally Skewed, Globally Balanced (Johnson generalization - Section 11.2)

• Combination of the above two

The user may also choose one of the following to control the BDD WalkSAT

solver:

2See Page 5 for the definition of logically equivalent.
3See Page 4 for the definition of equi-satisfiable.
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Figure 1: Schematic depiction of controllable execution paths of SBSAT.

• Adaptive Novelty+ (Section 12.2.1)

• Novelty+ (Section 12.2.2)

• Random (Section 12.2.3)

The size of the search space can be further controlled through learning. As

backtracks occur, new constraints, called Lemmas (described in Section 12.1),

also referred to as conflict clauses, or learned clauses, are added to the internal

constraint set. These can prevent some fruitless backtracking later in the search.

However, there is some overhead incurred by Lemmas. Hence it is important to

choose carefully which Lemmas are to be saved, how many Lemmas can be saved

at a maximum, and which Lemmas to discard when the maximum is exceeded.

These choices are controlled by switches on the command line and are described

in Section 7. The results of operations initiated by those switches are explained

in Section 12.1.

The solver was successfully tested and compiled on a number of Unix based

platforms such as Linux, DEC, Solaris, Mac OS X, Windows/Cygwin with a

number of different compilers such as gcc2.95, gcc3.x, solaris-cc, dec-cc, pgcc.
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1 About the Manual

The manual begins with sections describing conventions and definitions. The

remainder of the manual has two parts: Sections 3 to 6 are written to get

the novice acquainted with the use of SBSAT quickly; the following sections,

beginning with Section 7, provide details needed for an accomplished user to

fine-tune the use of SBSAT.
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2 Conventions and Definitions

From now on we use SBSAT to refer to the package and sbsat to refer to the

executable that is run to solve problems of the type stated at the beginning of

the welcome section on Page i.

2.1 Conventions

When describing command line or file line syntax the following conventions

apply. Items of important types are signified by enclosing the item in angle

brackets. For example,

<var>

is an item of type <var>. Presumably the types used are defined in the text in

close proximity to the first place they occur. The unterminated ellipsis (...) is

used to indicate that arbitrarily many items of the type preceeding the ellipsis

are possible after it. For example,

<var> <var> ...

means at least two items of type <var>, separated by blanks. and

<var><var>...

means at least two items of type <var>, not separated by blanks. A terminated

ellipsis is used to indicate a list of finite size (one or more elements). For example,

var_1 ... var_n

means a list containing n items, n ≥ 1 (the type of the items is described in the

surrounding text). An optional flag or switch will be signified by enclosing it in

square brackets. For example:

[-]<var> ...

means at least one <var> item may or may not be preceeded by the character

’-’. The vertical bar (’|’) separating items between square brackets (’[’, ’]’)

indicates a choice. For example:

[a|b|c]

means either a or b or c.
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Various segments of an sbsat session will be highlighted using font changes

to assist the reader in understanding the nature of command segments and re-

sults. Input and output will be specified using the typewriter font. For example,

these segments appear like this

Reading file ...

The $ character at the beginning of a line is the command line prompt and in-

dicates that what follows is a command to be executed. The prompt is usually

followed by an sbsat command. For example, the following is a simple sbsat

command:

$ sbsat file.cnf

Programming options appear in italics to contrast with option parameters which

appear in plain text. For example, to get command line help use this command:

$ sbsat --help

An input file has keywords in boldface such as in the following:

and ($1, 2)

The $ of the previous line is not the command line prompt: its use in that

context will be explained in Section 9.1.

Boolean Quantifiers and operators shall be written in the usual manner.

Thus,

∀x means For all values of x

∃x means There exists a value for x such that

¬ means negation or complementation

∨ means logical “or”

∧ means logical “and”

⇒ means logical “implies”

⊕ means logical “exclusive-or”

≡ means equivalent

⇔ means “if and only if”

2.2 Definitions

• Backjumping - Advancement of the search by skipping over some choice

points that cannot possibly lead to a solution.
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• BDD - A Binary Decision Diagram is a DAG-representation of a Boolean

function expressed using only the operator if-then-else, plus constants

T and F, Boolean variables, and parentheses. BDD representations are

usually far more compact than truth table representations. The form of

BDDs we used are reduced and ordered as these are canonical representa-

tions of functions.

• Boolean Function - A Boolean function has one or more variable or

Boolean function arguments and may or may not return a Boolean value

depending on values assigned to or returned from its arguments. Any

Boolean function can be expressed in terms of a nesting of Boolean func-

tions as BDDs. This fact is used to express arbitrary Boolean functions

in our canonical form (see Section 9.1).

• Boolean Variable - A variable may or may not be assigned a value: if it

is assigned a value that value is one of the atoms in the set {T, F}, where T

and F may be thought of as corresponding to true and false, respectively.

In this document we alternatively and interchangeably use the set {1, 0}

for {T, F} since so much of the literature uses that notation. Hereafter,

when we say variable we mean Boolean variable.

• Choice point - The point in a search where an uninferred variable is

given a value decided upon by some heuristic.

• Clause - A disjunction (∨) of literals. For example, (x35 ∨ ¬x42 ∨ x12).

• CNF - Conjunctive Normal Form. A conjunction (∧) of clauses. This is

an important form for Boolean expressions since there exists an efficient

translation to a logically equivalent CNF expression from any Boolean

expression.

• DIMACS CNF - Standard format accepted by all CNF SAT solvers.

For a complete specification of this format see

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi

Skeletal descriptions are found in Sections 4.2 and 9.2.

• Equi-satisfiable - A scheme for translating one Boolean function to an-

other such that the target function is satisfiable if and only if the source

function is satisfiable is said to produce an equi-satisfiable target function.
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• Inference - An assignment of a value to a variable that is forced due to

the constraints of the given expression.

• Lemma - A Boolean expression inferred (i.e., learned) during the search.

SBSAT learns lemmas by analyzing why some branch of the search tree

failed to find a solution. SBSAT’s lemmas are clauses. A solver, such as

SBSAT, that learns lemmas can often use previously learned lemmas to

avoid researching the same failed variable assignments.

• Literal - A variable or its negation. For example, x35 or ¬x35. If the

variable x35 is assigned the value T then the value of literal x35 is T and

the value of ¬x35 is F.

• Logically equivalent - A scheme for translating one Boolean function to

another such that the target function evaluates to the same truth value as

the source function in every model is said to produce a logically equivalent

target function.

• Preprocessing - Operations applied to an sbsat input expression before

search commences. Many such operations are possible and running one

operation may affect the result of others. A list of all preprocessing options

and descriptions of their operation is given in Section 10.

• Satisfiable - A Boolean function is satisfiable if and only if there exists

an assignment of values to its variables which causes it to evaluate to

1. A section of the output generated by sbsat says whether the input

expression is satisfiable. For example, see the next to last line of Figure 4

below.

• Solution - An assignment of values to variables of a Boolean function

which causes it to evaluate to 1. A section of the output generated by

sbsat provides a solution, if one exists and if the proper command line

switches are set. For example, see the last lines of Figure 5. A solution, as

presented by sbsat, is a list of variable names and each that is preceeded

by a ’-’ is assigned value F and all others are assigned value T.

• Standard input - An input stream from the console to a running exe-

cutable, for example sbsat. Input may be redirected in Unix or Windows

using the < character before the entity containing desired input, usually a

file.
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• Standard output - An output stream to the console from a running

executable, for example sbsat. Output may be redirected in Unix or

Windows using the > character before the entity which is to receive the

stream, usually a file.

• Switch - an sbsat option given by the user on the command line. Switches

are always preceeded either by a dash (-) or a double dash (--). All

switches understood by sbsat are listed and described briefly in Section 7.

• Truth Table - The truth table for a particular Boolean function is a

listing of all possible assignments of values to the variables of the function;

and next to each assignment is the value the function takes under that

assignment.

• Unary, Binary, and Ternary Boolean Functions (not, and, nand,

or, nor, xor, equ, imp, nimp, ite ) - A Boolean function of two variables.

There are 222

= 16 different binary Boolean functions and 2 unary func-

tions. Names associated with a subset of these that include only non-trivial

functions are given in the following table where, for binary functions, the

bits of the 1-0 strings correspond to function values given input values

of 00, 01, 10, and 11, respectively, from left to right, and for the unary

function the two bit strings correspond to input values of 0 and 1, respec-

tively, from left to right. An important ternary function is if-then-else

which we call ite. Its functionality is also expressed in the table with the

obvious correspondence between input values and function values.

Binary Unary

and 0001 nand 1110 not 10

or 0111 nor 1000

equ 1001 xor 0110 Ternary

imp 1101 nimp 0010 ite 01010011

• Unsatisfiable - A Boolean function is unsatisfiable if and only if it is not

satisfiable. A section of the output generated by sbsat will say whether

the input expression is unsatisfiable.
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3 Quick Start - Getting sbsat ready to run

This and the following three sections are intended to provide enough information

to begin using sbsat successfully, if not optimally.

3.1 Hardware Requirements

Currently, sbsat requires a Unix style operating system with a c++ compiler,

preferably, but not necessarily, the GNU g++ compiler. All examples require

at least 32MB of RAM beyond the requirements of the operating system. Disk

requirements depend on the operating system but at least 50MB of free space

is required.

By default, during execution, sbsat is allocated as much RAM as it needs,

if available. The amount of memory requested by sbsat can be limited only

indirectly by changing, for example, the number of lemmas it maintains in the

cache or the size of the pools for different stacks4. There is no other option

to limit the amount of memory it is allocated. Experiments confirm that the

amount of memory requested linearly follows the size of the problem being

solved. sbsat is not multi-threaded and does not take advantage of multiple

processors.

3.2 Getting SBSAT

SBSAT is available for download from the following website:

http://www.cs.uc.edu/~weaversa/SBSAT.html

SBSAT may also be obtained by email request to weaversa@gmail.com,

mkouril@ececs.uc.edu, or franco@gauss.ececs.uc.edu. The distribution

comes in two forms: a single CDROM and a tarball named sbsat-latest.tar.gz.

Those authorized to login to boole.ececs.uc.edu may use scp to download the

tarball from directory /home/mkouril. The command to do this in unix (from

your local host) is:

$ scp boole.ececs.uc.edu:/home/mkouril/sbsat-latest.tar.gz .

From a PC running Windows login to boole using TeraTerm Pro and transfer

4sbsat is allocated a new pool of the same size if and when it exhausts the current one.
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the file using zmodem. On boole, There is also a CVS repository containing

SBSAT. To check out the latest CVS sources, execute the following command

in unix (from your local host):

$ cvs -d boole.ececs.uc.edu:/home/mkouril/CVS/ co sbsat

3.3 Installing SBSAT

These instructions are only for installing SBSAT on computers running unix.

Instructions for Windows machines will be supplied in a future release.

Become root (This step may not be necessary). This entails knowing the

superuser password. At the command line prompt, issue the command su and

enter the superuser password when requested to do so.

If you have the CDROM, insert it into the CDROM drive and mount that

drive, usually on /mnt/cdrom, using the following:

$ mount /dev/cdrom /mnt/cdrom

If this command fails, find a suitable mount point in place of /mnt/cdrom or

find the correct /dev for the CDROM (for example, /dev/scd0) or both. If

this still fails, consult a system administrator. The following assumes the above

command succeeded. Change directory to the place where SBSAT is to be in-

stalled (for example /usr/local), make a directory called sbsat, change to that

directory, and copy the contents of the CDROM to the current directory using

the following commands:

$ cd /usr/local

$ mkdir sbsat

$ cd sbsat

$ cp -r /mnt/cdrom/* .

where the ‘.’ is part of the command and means current directory. Use the

umount command to unmount the CDROM as follows:

$ umount /mnt/cdrom

If you are installing the tarball, move it to the directory in which SBSAT

is to reside. For example, if the target directory is /usr/local and sbsat-

latest.tar.gz exists in the home directory of a user named franco then issue
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the command

$ mv ~franco/sbsat-latest.tar.gz /usr/local

Unzip and unarchive the tarball using the following commands

$ cd /usr/local

$ tar -xvzf sbsat-latest.tar.gz

You may remove the tarball, if you wish, with

$ rm sbsat-latest.tar

The result of the above commands is that all files of the SBSAT package are in

a directory such as

/usr/local/sbsat-<version>-<revision>

where <version> and <revision> are the version and revision you have in-

stalled: for example, on January 5, 2007 the version is 2.5b and the revision is

5 so in this case the directory is

/usr/local/sbsat-2.5b-5

Set a link to this directory from /usr/local using a command like the following

except with the correct version and revision numbers:

$ ln -s sbsat-2.5b-5 sbsat

3.4 Compiling SBSAT

Become root as in Section 3.3 (This step may not be necessary). Change to

the directory containing the SBSAT files, called the root directory of the SBSAT

tree. If you followed the instructions in Section 3.3 this is accomplished with

the following command:

$ cd /usr/local/sbsat

Issue the commands

$ ./configure

$ make

From now on files and directories contained in or below the root directory of the

SBSAT tree will be referred to with .../ prepended to their paths originating
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from that directory. If no errors are reported the SBSAT executable, named

sbsat, exists in directory .../src. To use the executable conveniently from

any directory it is advisable to set a link to it from some directory that is in

your PATH. This can be done automatically by executing the command (as root)

$ make install

This command places sbsat in /usr/local/bin. To do this by hand, if /usr/local/bin

is in your PATH (it normally is), as root change directory to /usr/local/bin

then set a link as in the following

$ cd /usr/local/bin

$ ln -s .../src/sbsat .

where .../ should be replaced by the path of the root directory of the SBSAT

tree. Now issuing the command sbsat from any directory will start the solver.

But, don’t do this yet as there are some fine points to using SBSAT which must

be discussed.

3.4.1 Configure options

There are quite a few options one can use when running ./configure. For the

complete set of options run ./configure --help. The following few can be

very useful.

• Use a different compiler

$ ./configure CXX=g++

• Link the libraries statically

$ ./configure --static

• Enable some compiler optimization flags

$ ./configure -enable-optimization

• Enable the compiler debugging flags, allowing debuggers like gdb to hook

into sbsat

$ ./configure -enable-debug
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===========================================

Checking longer benchmarks

you may interrupt it any time

All SAT

===========================================

5-wid_300-var_r3.cnf ... Satisfiable

5-wid_400-var_Slide_r3.cnf ... Satisfiable

c5-wid.cnf ... Satisfiable

===========================================

Done - Sucess

===========================================

Figure 2: Result of running the cnf tests in .../tests.

3.5 Testing SBSAT

A series of regression tests may be run by issuing the following command while

in the root directory of the SBSAT tree:

$ make check

To run any of these tests individually, change to the tests directory in the

SBSAT directory using the following

$ cd .../tests

where ... is replaced by the path of the root directory of the SBSAT tree. In

this directory check that the following files are there: cnf_tests.sh, longer_tests.sh,

trace_tests.sh, xor_tests.sh. Run any of these to test some aspect of the

solver. For example, using the command

$ /bin/sh cnf_tests.sh

results in the output of Figure 2.
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4 Quick Start - The basics of running SBSAT

This section illustrates some of the ways a user can fine-tune a run of sbsat on

a given input. It is assumed that a link to the executable has been set as per

Section 3.4. Doing so makes the command sbsat accessible to everyone from

every directory. The complexity of options which are available necessitates two

preliminary sections describing conventions and defining terms that will be used

later. All examples in this manual are part of the SBSAT distribution and may

be found in the .../examples directory.

4.1 Command line

The usage of SBSAT is:

$ sbsat [options] [inputfile [outputfile]]

There are two basic options required by GNU standard. One is

--version

This displays the current version. The other is

--help

This shows all the command line options. More information on these is given

later.

If sbsat is launched without parameters it expects the input data on stan-

dard input.

The first parameter without a dash is the input data file, the second param-

eter without a dash is the output file. If no output file is specified sbsat it will

print all output to the terminal.

4.2 A CNF formula as input

SBSAT recognizes a CNF formula as input if it is expressed in an ascii file that

is formatted according to the DIMACS standard5. Such an input file begins

with a line such as the following

5See ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi for a com-
plete specification.
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p cnf 6 8

c This is a demonstration of the CNF format for the SBSAT solver

1 2 3 0

2 3 4 0

3 4 5 0

4 5 6 0

-1 -2 -3 0

-2 -3 -4 0

-3 -4 -5 0

-4 -5 -6 0

Figure 3: Contents of the ascii file small.cnf

Reading File small.cnf ....

Reading CNF ... Done

Preprocessing .... Done

Satisfiable

Total Time: 0.008

Figure 4: Output generated by the command $ sbsat small.cnf.

p cnf <number_of_variables> <number_of_clauses>

where <number_of_variables> is the number of distinct variables present in

the file and <number_of_clauses> is the number of clauses present in the input

file. Lines starting with the character c indicate a comment and are ignored.

Variables are represented as positive numbers, beginning with 1. A positive

literal is a positive number and a negative literal is a negative number. Each

clause is expressed on one line as a 0 terminated list of numbers, separated by

blanks, and representing the literals of the clause. The contents of a file named

small.cnf is shown in Figure 3.

Use the following commands to run sbsat on file small.cnf (assume the starting

point is the root directory of the SBSAT tree):

$ cd examples

$ sbsat small.cnf

The output is shown in Figure 4.

In order to get the actual satisfiable assignment from the solver we need

to add the input parameter to the command line which instructs the solver to
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Reading File small.cnf ....

Reading CNF ... Done

Preprocessing .... Done

Preprocessing .... Done

1 2 -3 4 5 -6

Satisfiable

Total Time: 0.009

Figure 5: Output generated by command $ sbsat -R r small.cnf.

output the solution. The following command is this:

$ sbsat -R r small.cnf

Remark: The format of small.cnf is automatically determined by sbsat so

a command line switch to set a format is not necessary.

Remark: The order of the parameters on the command line usually does not

matter6 provided the values remain immediately to the right of the switches they

associate with. So, in this case the following command line would do exactly

the same as the one above.

$ sbsat small.cnf -R r

Output from the above command is shown in Figure 5.

Remark: In case the same switch is used more than once on the command

line, the rightmost switch applies. For example,

$ sbsat small.cnf -R r -R f

prints fancy instead of raw output format (see Pages 92 and 92 for the meaning

of these formats).

The default output mixes solution information with execution information.

Solution information may be separated from execution information as follows.

$ sbsat small.cnf -R r --output-file output.txt

Output from this run is sent to the file output.txt as follows:

1 2 -3 4 5 -6

6With the exception of -All preprocessing switch and preprocessing enable/disable
switches. All switches are listed and described in Section 7.
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SBSAT is a SAT solver.

Usage: sbsat [OPTIONS]... [inputfile [outputfile]]

Options:

--help, -h Show all program options

--version Show program version

--create-ini Create ini file

--ini <string> Set the ini file [default=‘‘~/sbsat.ini’’]

--debug <number> debugging level (0-none, 9-max) [default=2]

--debug-dev <string> debugging device [default=‘‘stderr’’]

--params-dump, -D dump all internal parameters before processing

--input-file <string> input filename [default=‘‘-’’]

--output-file <string> output filename [default=‘‘-’’]

--temp-dir <string> directory for temporary files [default=‘‘$TEMP’’]

--show-result <string>, -R <string>

Show result (n=no result, r=raw, f=fancy) [default=‘‘n’’]

...

Figure 6: Beginning of output generated by the command sbsat --help.

Remark: Some of the command line options have both a short and a long flag

which can be used interchangably. For example the ’--show-result ’ switch is

interchangeable with ’-R ’.

All available switches can be printed using the following command:

$ sbsat --help

which gives the output shown, in part, in Figure 6.

4.3 An input in canonical (BDD) form

The preferred input type is the canonical form referred to on Page i. A detailed

explanation is given in Section 9.1. The canonical form depends on the notion

of BDDs which is explained in Section 10.1.

An ascii file containing input in canonical form begins with a line such as

the following:

p bdd <number_of_variables> <number_of_functions>

where <number_of_variables> is the number of distinct variables present in the

file and <number_of_functions> is the number of Boolean functions present in

the file. Variables are given names which are strings of alphabetic and numeric

characters and the underscore character, in any order. A comment begins with
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’;’ and may start anywhere on a line and applies to the end of the line. Each line

starting with a Boolean function identifier listed in the Boolean Function item

of Section 2.2, or a manipulator (see Section 9.1 for manipulators) represents a

Boolean function. For example, the following lines can be in a file containing a

canonical form expression:

imp(-x3, -x4)

xor(x1, -x5)

xor(x8, x3, -x2, x7, -x4, -x1)

Remark: Since no binary function can take 1 argument, xor(-x1) is not

admitted.

A function argument may be a variable, a function, or a reference to a

function defined elsewhere in the file. To support the latter, every function is

assigned a unique index integer corresponding to the order the function appears

in the file. The first function has index 1, the next has index 2 and so on. There

may be several commented lines between two functions but those functions still

have consecutive index numbers. A function may be referenced by appending

its index number to the ’$’ character. One or more arguments of a function may

contain function references but the references may not point forward: that is,

the index in a function reference cannot be greater than or equal to the index

of the function in which the reference is made. Here is an example:

p bdd 4 5

or(x2, x3)

and(x3, x4)

imp(x3, $2)

xor($3, $1, x4, x1)

and(x2, x3)

The fourth line of this group is equivalent to

xor(imp(x3, and(x3, x4)), or(x2, x3), x4, x1)

which is also recognized by sbsat.

Because it is possible to reference functions, it is possible that some functions

which are not at the top-level (that is, not among those to be satisfied) exist

as functions specified in an input file. Such functions are distinguished from
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top-level functions by prepending ’*’ to top-level functions only. For example:

p bdd 4 5

or(x2, x3)

and(x3, x4)

imp(x3, $2)

*xor($3, $1, x4, x1)

*or(x2, x3)

represents the problem

((x3 ⇒ (x3 ∧ x4)) ⊕ (x2 ∨ x3) ⊕ x4 ⊕ x1) ∧ (x2 ∨ x3)

If no functions have ’*’ prepended, then all functions are treated as top-level

functions.

4.4 An input in XOR format

The XOR format is a specialization of the canonical form allowing up to two

levels of function nesting. However, the grammar of this format is very different.

The following is the example .../examples/xortest.xor:

p xor 12 3

x123 x125 x156 = 0

x134 x155x127x167 = 1

x1x2x3 x45x145x167 = 0

which is equivalent to the following canonical form

p bdd 12 3

equ(xor(123, 125, 156), F)

equ(xor(134, and(155, 127, 167)), T)

equ(xor(and(1, 2, 3), and(45, 145, 167)), F)

This may be solved using the following command:

$ sbsat xortest.xor

The result is shown in Figure 7.

One peculiarity of this format is that all variables must have names that
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begin with x and end with a number. No other variable names are allowed. See

Section 9.4 for important details concerning this format.

4.5 Reusing functions (Macros)

The canonical form only (that is, not cnf or xor formats, among others) sup-

ports a rudimentary macro facility. A macro is defined using the directive

#define with the following syntax:

#define <pattern> # <function-specifier>

where <pattern> consists of an identifier and a parenthesized argument list.

Wherever the <pattern> is matched in the file, <function-specifier> is sub-

stituted. Then, <function-specifier> takes as parameters those arguments

specified in <pattern>.

Many inputs, particularly those representing an “unfolding” of some form

of temporal logic, consist of a high percentage of functions which are identical

except that all variable input numbers are displaced by some amount. In such

a case there is a shortened way to express those functions using #define. For

example, the file of Figure 8 may be written equivalently as the file of Figure 9.

More information about #define is found in Section 9.1.5, Page 57.

4.6 Printing functions

In canonical form files only, one may use print_tree or pprint_tree to print

the truth table of a function as a BDD. For example,

print_tree(or(x4, x5, -x6))

prints the following to standard output
-----------------------------------------------------------

x6

x5 T

T x4

T F

-----------------------------------------------------------

See Page 58 for more information on the use of print directives.
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Reading File xortest.xor ....

Reading XOR ... Done

Preprocessing .... Done

Satisfiable

Total Time: 0.008

Figure 7: Result of executing the command sbsat xortest.xor.

p bdd 44 5

equ(xor(1, and(-17, 33)), ite(15, or(33, -40), -33))

equ(xor(2, and(-18, 34)), ite(16, or(34, -41), -34))

equ(xor(3, and(-19, 35)), ite(17, or(35, -42), -35))

equ(xor(4, and(-20, 36)), ite(18, or(36, -43), -36))

equ(xor(5, and(-21, 37)), ite(19, or(37, -44), -37))

Figure 8: A canonical form input of “sliding” functions.

p bdd 44 5

#define slide(1, 17, 15, 33, 40)

# equ(xor(1, and(-17, 33)), ite(15, or(33, -40), -33))

slide(1, 17, 15, 33, 40)

slide(2, 18, 16, 34, 41)

slide(3, 19, 17, 35, 42)

slide(4, 20, 18, 36, 43)

slide(5, 21, 19, 37, 44)

Figure 9: An equivalent input using macros.
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p bdd 30 11 ; 30 vars, 11 functions

Initial_Branch(#1, var*%25.1111, a%10, b, t*e)

; These variables will be branched on first.

;*’ is a wildcard. a % influences the heuristic value.

Initial_Branch(#2, x, var*, b%10.3948, 5, v2)

; These variables will be branched on second.

; b is ignored here because it appeares in an Initial_Branch statement above.

ite(var1, T, F) ; BDD $1, no top-level function created.

var(var1) ; BDD $2, no top-level function created.

; The two preceeding lines created identical functions.

; T is built in for True, F is built in for False.

and(var1, var2) ; BDD $3, no top-level function created.

and(a, b, 1, 2) ; BDD $4, no top-level function created.

*or($3, not($4), -var1) ; BDD $5, top-level function 1.

*ite(4 5 6) ; BDD $6, top-level function 2.

; Notice commas are not required.

ite(2 ; BDD $7, no top-level function created.

ite(3 4 5) ; Comments are ignored, even in the middle of a function.

and(or(6 7) 8) ; top-level functions can span multiple lines.

)

; Defining the ternary majority-vote operator.

#define majv(x, y, z) # ite(x, or(y, z), and(y, z))

; Defining a quintal operator.

#define AndOr4(a, b, c, d) # and(OR(a, b), OR(b, c), OR(c, d))

; Previously defined functions can be used to define more complex functions.

#define AndOr4_MAJV(v1, v2, v3, v4)

# AndOr4(majv(v1, v2, v3), majv(v1, v3, v4), majv(v1, v2, v4), majv(v2, v3, v4))

*AndOr4_majv(tem1e, tem2e, tem3e, tem4e) ; BDD $8, top-level function 3.

; There is no case sensitivity.

; Overloading of build in operators is not allowed.

; #define and(x, y, z) # or(x, y, z) ; This will cause an error message.

*and(var1, var2, var3) ; BDD $9, top-level function 4.

print_tree($7) ; print - No function created, no top-level function created.

pprint_tree($7) ; pretty print - No function created, no top-level function created.

*minmax(0, 1, x10, x9, x8, x7) ; eqn $10, top-level function 5

print_tree(minmax(0, 1, x10, x9, x8, x7)) ; No function created, no top-level function created.

*or(pprint_tree(print_tree(and(2, 3))), 4) ; BDD $11, top-level function 6.

; This function is identical to the function created by *or(and(2, 3), 4)’

; The difference is that function $11 also prints and(2, 3)’ in two

; different printing styles.

*print_tree($11) ; No function created, no top-level function created.

; A *’ in front of directives is ignored.

Figure 10: A complex canonical form input.
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4.7 An example of a complex canonical form input

Figure 10 illustrates the use of all the points discussed in previous sections re-

lated to the canonical form of input. Some annotations in the example illustrate

additional file format points not covered in the text. See Section 9.1 for details.

Remark: Although both parentheses and commas are optional, their use is

recommended to improve the reader’s understanding of the input.

4.8 Translating an expression to canonical form

Two examples of translating an expression, arising from real problems, to canon-

ical form are presented. The steps involved are: 1) construct that expression in

domain-specific terms; 2) translate to a conjunction of functions; 3) translate to

canonical form. Step 3) is usually straightforward. The first example is related

to reconfigurable computing and is interesting because it is naturally expressed

as a Quantified Boolean Formula (QBF) with one alternation, which is often a

difficult problem to solve. The second example relates to formal verification.

4.8.1 Interconnect synthesis in reconfigurable computing

Many reconfigurable computers consist of multiple field-programmable proces-

sors (FPGAs) connected through a Programmable Interconnect Network (PIN)

as shown in Figure 11. Interconnect synthesis is the process of configuring the

PIN to match the communication requirements of the designs implemented on

the processors. The general architecture of a PIN is depicted in Figure 12.

A PIN routes signals between various input and output pins of the FPGAs:

the specific routing is determined by the control signals on each of the routing

blocks. One of many available routing blocks is shown in Figure 13, this one on

the well-known Wildforce board.

Typically, but not necessarily, the control signals define a permutation of the

inputs of the block and the permuted signals are routed to the corresponding

output pins of the block. Each control signal can take a value from {T, F}

or be unassigned. An assignment of values to control signals is said to be a

program of the interconnection network. Thus, a program defines a routing

of the signals through the interconnection network. A required routing may
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be realizable through one or more programs or not realizable at all depending

upon the routing capabilities of the interconnection blocks and how they are

connected. A configuration of an interconnection network refers to a set of

routes realized by a program. Whereas a program defines a configuration, it is

not necessary that each configuration is realizable by a unique program.

The problem of interconnect synthesis can be formulated as a problem of

determining the satisfiability of a class of QBFs. For a PIN, let PI be the

set of primary inputs (those connecting to FPGA outputs), PO be the set of

primary outputs (those connecting to FPGA inputs), and IO be the set of

intermediate outputs (those not directly accessible through pins). Let M be

a desired routing from PI to PO and ConstraintsM,IO(PI, PO) be a set of

contraints which evaluates to T if and only if values on PO match values on a

given PI according to M without any inconsistencies among IO. The QBFs

have the following form:

∀ PI ∃ PO & IO s.t. ConstraintsM,IO(PI, PO)

For this class, there is an efficient method for eliminating the Quantifiers

resulting in a system of quantifier-free formulas that can be determined using

ordinary satisfiability solvers. The key idea, called impulse response, is to estab-

lish constraints that force exactly one route from a single input to its destination

at a time, and to repeat this process for all inputs.

Given an n dimensional Boolean vector V = {x1, x2, · · ·xn}, define impulse(i)

to be an assignment of F to variable xi and T to all the other variables in V .

Clearly, there are n impulses for an n dimensional vector. For each impulse,

it is straightforward to build constraints that force the target primary output

to take value F and all other primary outputs to take value T while enforcing

consistency among intermediate values (an example follows). Call such a con-

straint, for impulse(i), ImpConstraintM,IO(i). Then the QBF above can be

replaced with the following Boolean expression:

∧n
i=1ImpConstraintM,IO(i) ∧ xi ≡ F ∧j 6=i xj ≡ T

which, it can be shown, evaluates to T if and only if the QBF above does.

Consider, for example, just the routing block of Figure 13. The primary

inputs are {x1, x2, x3, x4, s1, s2, s3}, the primary outputs are {o1, o2, o3, o4}, and
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the two intermediate outputs are {o5, o6}. Suppose each subblock S (there

are three of them) either routes its two inputs directly to its two outputs (for

example, x1 is routed to o1 and x2 is routed to o5 through the upper left subblock

if s1 = F ) or crosses its routes (for example, x1 is routed to o5 and x2 is routed

to o1 if s1 = T ). Then one can write the four equations shown in the Figure

that relate primary outputs to primary inputs. Those equations are the basis

for the consistency constraints needed.

The precise constraints depend on the routing desired. Suppose we wish to

determine whether there is a program (assignment to {s1, s2, s3}) that realizes

the configuration x1 to o1, x2 to o3, x3 to o2, and x4 to o4. For impulse(1) the

consistency constraints are

o11 ≡ ite(s1, x12, x11) ∧ o12 ≡ ite(s3, o16, o15) ∧ o13 ≡ ite(s3, o15, o16) ∧ o14 ≡

ite(s2, x13, x14)

∧o15 ≡ ite(s1, x11, x12) ∧ o16 ≡ ite(s2, x14, x13)

∧x11 ≡ o11

These are conjoined with the constraints forcing impulse(1) which are

x11 ≡ F ∧ x12 ≡ T ∧ x13 ≡ T ∧ x14 ≡ T

Similar constraints may be constructed for impulse(2) through impulse(4). The

conjunction of all four sets of constraints is the Boolean expression of interest: if

some assignment to {s1, s2, s3} satisfies that expression, that assignment routes

primary inputs to primary outputs as desired. The next step is to write the

constraints in canonical form. This is straightforward and the result is shown

in Figure 14.

4.8.2 Bounded Model Checking

A sequential circuit differs from a combinational circuit in that output values

depend not only on current input values but also on the history of change of those

values. This may be modeled by a digraph such as the one in Figure 15 where

each node represents a state of all output and intermediate values based on some

input change history and each arc is labeled by input(s) whose changing value(s)

cause(s) a transition from one state to another. Each transition is referred to

below as a time step.

24



p bdd 43 32

; Consistency constraints for impulse(1)

equ(o11, ite(s1, x12, x11))

equ(o12, ite(s3, o16, o15))

equ(o13, ite(s3, o15, o16))

equ(o14, ite(s2, x13, x14))

equ(o15, ite(s1, x11, x12))

equ(o16, ite(s2, x14, x13))

equ(x11, o11)

; Constraint forcing impulse(1)

and(-x11, x12, x13, x14)

; Consistency constraints for impulse(3)

equ(o21, ite(s1, x22, x21))

equ(o22, ite(s3, o26, o25))

equ(o23, ite(s3, o25, o26))

equ(o24, ite(s2, x23, x24))

equ(o25, ite(s1, x21, x22))

equ(o26, ite(s2, x24, x23))

equ(x21, o21)

; Constraint forcing impulse(2)

and(x21, -x22, x23, x24)

; Consistency constraints for impulse(3)

equ(o31, ite(s1, x32, x31))

equ(o32, ite(s3, o36, o35))

equ(o33, ite(s3, o35, o36))

equ(o34, ite(s2, x33, x34))

equ(o35, ite(s1, x31, x32))

equ(o36, ite(s2, x34, x33))

equ(x31, o31)

; Constraint forcing impulse(3)

and(x31, x32, -x33, x34)

; Consistency constraints for impulse(4)

equ(o41, ite(s1, x42, x41))

equ(o42, ite(s3, o46, o45))

equ(o43, ite(s3, o45, o46))

equ(o44, ite(s2, x43, x44))

equ(o45, ite(s1, x41, x42))

equ(o46, ite(s2, x44, x43))

equ(x41, o41)

; Constraint forcing impulse(4)

and(x41, x42, x43, -x44)

Figure 14: Interconnect synthesis example in canonical form.

25



Let a circuit property be expressed as a propositional Boolean expression. An

example of a property for a potential JK flip flop might be J ∧ K ∧ Q meaning

that it is possible to have an output Q value of T if both inputs J and K have

value T.

The following time-dependent expressions are among those that typically

need to be proved for a sequential circuit.

1. For every path (in a corresponding digraph) property P is true at the next
time step.

2. For every path property P is true at some future time step.

3. For every path property P is true at every future time step.

4. For every path property P is true until property Q is true.

5. There exists a path such that property P is true at the next time step.

6. There exists a path such that property P is true at some future time step.

7. There exists a path such that property P is true at every future time step.

8. There exists a path such that property P is true until property Q is true.

To construct a Boolean expression which must have value T if and only if

the desired time-dependent expression holds, the Boolean expression must have

components which:

1. force the property or properties of the time dependent expression to hold,

2. establish the starting state,

3. force legal transitions to occur.

In order for the Boolean expression to remain of reasonable size it is gener-

ally necessary to bound the number of time steps in which the time-dependent

expression is to be verified; hence, bounded model checking.

For example, consider a simple 2-bit counter whose outputs are represented

by variables v1 (LSB) and v2 (MSB). Introduce variables vi
1 and vi

2 whose values

are intended to be the same as those of variables v1 and v2, respectively, on the

ith time step. Suppose the starting state is the case where both v0
1 and v0

2 have

value 0. The transition relation is
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Figure 15: A state machine representing a sequential circuit

Current Output Next Output

00 : 01

01 : 10

10 : 11

11 : 00

which can be expressed as the following Boolean function:

(vi+1
1 ≡ ¬vi

1) ∧ (vi+1
2 ≡ vi

1 ⊕ vi
2).

Suppose the time-dependent expression to be proved is:

Can the two-bit counter reach a count of 11 in exactly three time steps?

Assemble the propositional formula having value T if and only if the above query

holds as the conjunction of the following three parts:

1. Force the property to hold:

(¬(v0
1 ∧ v0

2) ∧ ¬(v1
1 ∧ v1

2) ∧ ¬(v2
1 ∧ v2

2) ∧ (v3
1 ∧ v3

2))
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p bdd 8 11

not(and(v10, v20)) ; Force a property to hold

not(and(v11, v21))

not(and(v12, v22))

and(v13, v23)

and(not(v10), not(v20)) ; Express a starting state

equ(v11, not(v10)) ; Force legal transitions

equ(v21, xor(v10, v20))

equ(v12, not(v11))

equ(v22, xor(v11, v21))

equ(v13, not(v12))

equ(v23, xor(v12, v22))

Figure 16: Bounded model checking example in canonical form.

2. Express the starting state:

(¬v0
1 ∧ ¬v0

2)

3. Force legal transitions (repetitions of the transition relation):

(v1
1 ≡ ¬v0

1) ∧ (v1
2 ≡ v0

1 ⊕ v0
2)∧

(v2
1 ≡ ¬v1

1) ∧ (v2
2 ≡ v1

1 ⊕ v1
2)∧

(v3
1 ≡ ¬v2

1) ∧ (v3
2 ≡ v2

1 ⊕ v2
2)

The reader may check that the following satisfy the above expressions:

v0
1 = 0, v0

2 = 0, v1
1 = 1, v1

2 = 0, v2
1 = 0, v2

2 = 1, v3
1 = 1, v3

2 = 1.

This assignment can be found by running sbsat on the example file bmc_example.ite

with the flag -R r. It may also be verified that no other assignment of values

to vi
1 and vi

2, 0 ≤ i ≤ 3, satisfies the above expressions by running the previous

command with two extra flags, namely --max-solutions 0 and -All 0 (de-

tails on these flags can be found in Section 7). The constraints are shown in

canonical form in Figure 16.
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4.9 Choosing a search procedure

By default, sbsat searches using the backtracking SMURF solver. But this

can be changed using command line switches. The table below summarizes the

switches and results.

Search Default Switch Description

SMURF yes -b Backtrack w/ learning

BDD WalkSAT no -w Local search

WVF (experts) no -m For debugging and research

Simple (experts) no -t For debugging and research

No solver no -n Exit sbsat after preprocessing

4.10 Converting the input file

SBSAT supports conversion between some of its input formats. For example,

an input format such as xor may be converted to cnf. In order to get as direct

a translation as possible, the preprocessing should be disabled when performing

conversions. This can be achieved by using -In 0 -All 0 switches on the

command line.

However, in some cases conversion is done so as to take advantage of prepro-

cessing. Thus, given a file in smurf format, one could preprocess with a result

in the same format or a different format like cnf.

One might also want to convert between formats so that a problem might be

attempted on a variety of solvers. For example, many problems come in trace

or BDD formats but traditional SAT solvers do not recognize those formats so

they must be converted to cnf.

Format conversions supported by SBSAT are listed in the following table

(more functionality is currently being developed). To determine whether for-

mat A can be converted to format B, locate A’s row and the answer appears in

B’s column. For example, format xor converts to cnf but not from cnf to xor.
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cnf dnf bdd smurf trace prove xor

cnf yes no no yes no no no

dnf yes no no yes no no no

bdd yes no no yes no no no

smurf yes no no yes no no no

trace yes no no yes no no no

prove yes no no yes no no no

xor yes no no yes no no no

A sample command for translating a file of one format to another is:

$ sbsat -c example.ite > example.cnf

which translates a file in trace format to one in cnf format. To get a direct

translation, preprocessing must be turned off. Thus:

$ sbsat -c -All 0 -In 0 example.ite > example.cnf

or

$ sbsat -c -All 0 -In 0 example.ite example.cnf

or

$ sbsat -c -All 0 -In 0 example.ite --output-file example.cnf

would be acceptable.
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5 Quick Start - Some advanced features of sbsat

5.1 Preprocessing

The preprocessor attempts to manipulate a given expression into an internal

form that should lead to a smarter search. This section highlights the main

points regarding the use of preprocessing.

5.1.1 Preprocessor options

Most of the many possible preprocessing options available to sbsat users are

shown in the table below (options not listed are considered unstable). See Sec-

tion 10 for an explanation of these options and when an option might pay off

and when it might be a liability.

Name Default Option Formats Description

Pattern Matching yes Cl CNF see Section 10.2

Generalized Cofactoring yes Co All see Section 10.3

Branch Pruning yes Pr All see Section 10.4

Strengthening yes St All see Section 10.5

Inferences yes In All see Section 10.6

Existentially Quantify yes Ex All see Section 10.7

Cluster + ExQuant yes Ea All see Section 10.8

Cluster + ExQuant + Safe yes Es All see Section 10.9

Dependent Var. Clustering yes Dc All see Section 10.10

Rewind yes Rw All see Section 10.11

Splitter yes Sp All see Section 10.12

5.1.2 Preprocessor sequence

Preprocessor options can be applied in any order, as desired, and repeated by

specifying the order and repetitions on the command line in the preprocessor

sequence. A preprocessor sequence consists of a list of preprocessor runs, or just

runs. Each run may be followed by a positive integer or another run. A run is

a concatenation of preprocessor options from the above table, wrapped inside
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matching curly braces. The preprocessing operations specified by the options

of a run are applied in the order in which they are specified. The run may

be repeated if it is immediately followed by a positive integer R. In that case

the run is repeated R times or until the internal form is the same before and

after the run (that is, until reaching a fixed point). If the run is not followed

by a number then it will repeat until reaching a fixed point. For example, the

following is a run which applies existential quantification, followed by dependent

variable clustering:

{ExDc}

The following is a preprocessor sequence with three runs, the first repeated at

most 3 times, the second at most 2 times and the third at most 10 times:

{ExDc}3{ExSt}2{ExPr}10

Nesting of runs is allowed as in

{{StDc{Pr{ExDc}3}{Ex}10}Ex}

There may be times when a preprocessor run should be run the maximum

number of times specified, instead of stopping early once reaching a fixed point.

There may also be times when only certain functions of a preprocessing run

should be considered when determining a stopping condition. All of this can be

controlled by bounding preprocessor runs, or options, inside of square brackets.

A set of square brackets should be followed by either 0 or 1 where a 0 forces the

internal form to be recognized as not altered, and a 1 forces the internal form

to be recognized as altered. For example:

{[ExDc]1}10

This sequence will causes the preprocessing run to loop 10 times even if the

internal form reachs a fixed point prior to 10 iterations. This happens because

the square brackets force sbsat to consider the internal form as having been

modified, even though it may not have been.

{Ex[St]0Dc}

This sequence causes the preprocessing run to loop only when either ‘Ex’ or ‘Dc’

modify the internal form. ‘St’ may modify the internal form, but the looping

process ignores this information.
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5.1.3 Preprocessor command

Proprocessing is specified on the command line using the --preprocess-sequence

or -P switch followed by a preprocessor sequence. For example,

$ sbsat --preprocess-sequence {ExDc}3{ExSt}2{ExPr}10 example.cnf

The following does the same thing:

$ sbsat -P {ExDc}3{ExSt}2{ExPr}10 example.cnf

For some problems, preprocessing might take too long or may not produce a

desired result. In this case the user may enable or disable preprocessing options

or change their sequence. For example,

$ sbsat -St 0 example.cnf

skips the strengthening operation in the current sequence. For example,

$ sbsat -P {Dc{ExSt}{ExPr}St}10 -St 0 example.cnf

is the same as

$ sbsat -P {Dc{Ex}{ExPr}}10 example.cnf

Also, the user may want to turn off every preprocessing option except one or

two. This can be achieved by using the -All 0 command, which turns off all pre-

processing options, followed by (for example) -St 1, which turns strengthening

back on. For example,

$ sbsat -P {Dc{ExSt}{ExPr}St}10 -All 0 -St 1 example.cnf

is the same as

$ sbsat -P {{St}St}10 example.cnf

Remark: One may avoid long preprocessing by saving the problem after pre-

processing in Smurf file format7 using, for example,

$ sbsat --output-file newfile.smurf -s myoldfile

and disabling preprocessing the next time sbsat is applied to the same input

using

$ sbsat -All 0 newfile.smurf.

Remark: Input files in canonical form (see Sections 4.3 and 9.1) allow pre-

7See Section 9.7 for a description of the Smurf file format.
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processing operations (and some other operations) to be performed while the

input file is parsed. The canonical form admits directives which specify such

operations in the order and precisely at the point they appear in the input file.

See Section 9.1.5 for a list of such operations.

5.2 Heuristics

Two search heuristics are included with SBSAT. One of these we refer to as the

LSGB heuristic for Locally Skewed, Globally Balanced. It is designed to work

well on inputs with little (known) structure and therefore favors assignments

that reveal inferences which can be derived from information about individual

functions (locally skewed) and simultaneously favors assignments that tend to

balance the entire search space (globally balanced). For more information on

this heuristic and insights for its control see Section 11.2.

The other search heuristic is a variant of the VSIDS heuristic Chaff uses.

See Section 11.3 for information about the use and control of this heuristic.

There is also an option, which we call combined, that allows the user to mix

the two heuristics. What this mixing accomplishes is given in Section 11.

The following table shows command line switches for selecting these heuris-

tics and associated parameters.

Heuristic Default Switch Description

LSGB yes -H j Locally Skewed, Globally Balanced

VSIDS no -H l Number of occurrences of literals

Combined no -H jl Combination of the two above

5.3 The lemma cache

The size of the cache in which the lemmas are stored is fixed throughout the

branching process. The memory needed to maintain the cache is automatically

allocated and accomodates all lemmas in the cache. Usually, the bigger the

memory cache, the slower the search process. Therefore one is confronted with

the following optimization problem: choose the lemma cache size small enough

to avoid burdensome overhead yet large enough that lemmas in the cache will
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significantly reduce search. The parameter to use for controlling the lemma

cache is --max-cached-lemmas or -L and an example of its use is this:

$ sbsat -L 1000 problem.cnf

It is possible to set the lemma cache to 0. This will prevent any lemma from

being created.8 For example, use

$ sbsat -L 0 slider_80_unsat.ite

For some problems this will yield significantly better results than when the

lemmas are used. See Section 12.1.2 for a discussion of when to use lemmas and

when not to use lemmas.

Remark: The heuristic used to discard lemmas from the cache when newly

created lemmas are added to a full cache is not compatible with the option that

disables lemma creation. Also the effectivness of the lemma heuristic decreases

with descreasing lemma cache size. See Section 12.1.2 for a discussion.

Remark: The Chaff-like (VSIDS) heuristic requires lemma creation and there-

fore is not compatible with the option that causes the lemmas not to be created

(-L 0).

Backjumping is inherently tied to lemmas and therefore, the backjumping

feature is active when -L has an argument greater than 0, and the backjumping

feature is inactive when -L 0 is used. To turn the backjumping feature on, but

store ‘almost’ no lemmas, use the flag -L 1. Please consider the --backjumping

flag deprecated.

5.4 Controlling preprocessing and search time

In some situations preprocessing time exceeds the savings in time realized during

search. In this case sbsat offers some ways to change the amount of prepro-

cessing time performed. These include:

1. Change the preprocessing sequence to perform less iterations (see Sec-

tion 5.1.2).

2. Specify a time limit, in seconds, for how long preprocessing can take. After

the time limit has been reached the preprocessor will quit and sbsat will

8See Section 12.1.1 for details.
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enter the search phase.

3. The user can terminate preprocessing interactively with ^C provided the

switch --ctrl-c 1 is used on the command line.

4. The user can fast forward through preprocessing with the arrow key (a

feature which is soon to be added).

An example of item 2 is the following:

$ sbsat example.cnf --max-preproc-time 180

which allows 3 minutes for preprocessing and continues to the search phase

after that. This time constraint is checked between preprocessing options, so

preprocessing could potentially terminate much later than desired.

Search time can also be controlled on the command line using a similar

switch. For example,

$ sbsat example.cnf --max-branching-time 180

limits search time to 3 minutes.

5.5 Creating and using an initialization file

When working on a problem that requires using a long command line over and

over, it is convenient to create an initialization file to prevent having to reenter

the switches on every run. The initialization file contains a list of settings that

are translated to switches by sbsat when it is invoked. SBSAT automatically

looks for sbsat.ini in the user’s home directory (that is, it looks for a file

~/sbsat.ini).

To create an ini file with the default values for all available options use the

following command:

$ sbsat --create-ini > ~/sbsat.ini

The initialization file may be created and/or edited by the user.

Remark: Command line options take precedence over ini file settings. This

allows short command lines with many custom settings and is useful for exper-

imentation.
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Remark: It is possible to maintain several initialization files and load a desired

one from the command line. Do this, for example, as follows:

$ sbsat --ini myini.ini example.cnf

which loads the options of initialization file myini.ini.

5.6 Debugging

It is possible that the particular command line settings will cause an ineffi-

cient search and/or preprocessing on a given input. The following is a list of

suggestions for helping sbsat to yield a result.

• Try converting to another format. See Section 17.1.

• Debug prints (in ITE format). See Section 17.2.

• Print internal data from the solver. See Section 17.2.

• Be familiar with BDDs and operations applied to them.

• Output the BDDs before preprocessing by using commands of Section 7.

• Match the BDDs to your original problem.

• If you think you discovered a bug in SBSAT email us!
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6 Quick Start - Getting more help quickly

• Check out the SBSAT Web Page 9

• Email us:

John Franco franco@gauss.ececs.uc.edu

Michal Kouril mkouril@ececs.uc.edu

Sean Weaver weaversa@gmail.com

9http://www.cs.uc.edu/˜weaversa/SBSAT.html
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7 Reference - Command line

The executable file that does the work of SBSAT is called sbsat and is run

from the command prompt of a Unix shell. The command line has the following

structure:

sbsat [options] [inputfile [outputfile]]

where inputfile is the name of a file containing a problem to be solved, and

outputfile names a file to which output from a run of sbsat can be directed.

The inputfile can take several formats, all somewhat different from each other,

which are described in Section 9. Options customize the execution of sbsat:

they control preprocessing, search, input, and output specifics and more. Ob-

serve that options, inputfile, and outputfile are all optional, but that if

outputfile is used, it is expected to be placed after inputfile.

Options are invoked using switches. A switch is preceeded by one or two

dashes (’-’ or ’--) and should be immediately followed by a parameter which is

either an integer or a string, depending on the switch (at the moment there are

no integer switches associated with sbsat. If a switch requires a parameter, one

or more blank characters separates it from the parameter. Switch/parameter

pairs are separated from each other and the file names by blanks. There are

many switches and they are organized below by type.

Some example runs are as follows:

$ sbsat --help

Lists all command line options

$ sbsat -R r example.cnf

Solve the problem in example.cnf, show the result raw

$ sbsat -P {ExDc}3{ExSt}2{ExPr}10 example.cnf

Preprocess the problem in example.cnf a certain way, then solve.

Switch-parameter pairs and file names may be placed anywhere on a command

line after sbsat. Thus, the following two runs are identical:

$ sbsat -R r example.cnf

$ sbsat example.cnf -R r

A switch may appear more than once on a command line. In that case the
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rightmost switch applies. In case contradictory switches are given, the rightmost

applies. For example:

$ sbsat -b -w

will invoke the BDD WalkSAT search (see Page 42 for option -w). Some switch

combinations cooperate with each other. For example:

$ sbsat -All 0 -St 1

turns all preprocessing off then turns strengthening on (see Page 43 for prepro-

cessing switches).
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7.1 General options

--help, -h - Show all program options

--version - Show program version

--create-ini - Create ini file

--ini <string> - Set the ini file [default=”̃ /sbsat.ini”]

--debug <number> - debugging level (0-none, 9-max) [default=2]

--debug-dev <string> - debugging device [default=”stderr”]

--params-dump, -D - dump all internal parameters before processing

--input-file <string> - input filename [default=”-”]

--output-file <string> - output filename [default=”-”]

--temp-dir <string> - directory for temporary files [default=”$TEMP”]

--show-result <string>, - Show result ((n)one, (r)aw, (f)ancy) [default=”n”]

-R <string>

--verify-solution <number> - Verify solution [default=1]

--expected-result <string> - Report error if the result is not as specified

Options are SAT, UNSAT, TRIV SAT,

TRIV UNSAT, SOLV S,

SOLV UNSAT [default=””]

--comment <string> - Comment to appear next to the filename [default=””]

--ctrl-c <number> - Enable/Disable Ctrl-c handler to end

preproc/search [default=0]

--reports <number> - Reporting style during branching

(0 - standard, 1 - crtwin) [default=0]

--competition <number> - Competition reporting style [default=0]

--sattimeout <number> - For SAT Competition SATTIMEOUT [default=0]

--satram <number> - For SAT Competition SATRAM [default=0]

--parse-filename - For testing purposes

7.2 BDD table options

--num-buckets <number> - Set the number of buckets in power of 2 [default=16]

--size-buckets <number> - Set the size of a bucket in power of 2 [default=5]

--bdd-pool-size <number> - The size of the bdd pool increment [default=1000000]

--gc <number> - Use garbage collection [default=1]
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7.3 Input options

--limit-and-equ <number> - Min # of literals to flag sp. function and equ [default=2]

--limit-or-equ <number> - Min # of literals to flag sp. function or equ [default=2]

--limit-or <number> - Min # of literals to flag sp. function plainor [default=8]

--limit-xor <number> - Min # of literals to flag sp. function plainxor [default=5]

--break-xors <number> - Break XORS into linear and non-linear functions

during search [default=1]

7.4 Output options

-b - Start SMURF solver [default]

-w - Start BDD WalkSAT solver

-m - Start WVF solver

-t - Start a stripped down version of the SMURF solver

-n - Don’t start any brancher or conversion

-s - Output in Smurf format

-c - Output in CNF format

-v - Output in VHDL/FPGA format

-p - Output in tree like format

--formatout <char> - Output format [default=’b’]

--cnf <string> - Format of CNF output (3sat, qm, noqm)

[default=”noqm”]

--tree - Output BDDs in tree representation (used in

conjunction with -p)

--tree-width <number> - Set BDD tree printing width [default=64]

--prover3-max-vars <number> - Max variables per BDD when reading

3 address code (input format 3) [default=10]
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7.5 Preprocessing options

--preset-variables <string> - Variables forced during preprocessing [default=””]

--preprocess-sequence <string>, - The preprocessing sequence

-P <string> [default=”{ExDc}{ExSt}{ExPr}{ExSp}{Ff}”]

--All, -All - Enable/Disable All Preprocessing Options (1/0)

--Cl <number>, -Cl <number> - Enable/Disable Clustering (1/0) [default=1]

--Co <number>, -Co <number> - Enable/Disable Cofactoring (1/0) [default=1]

--Pr <number>, -Pr <number> - Enable/Disable Pruning (1/0) [default=1]

--St <number>, -St <number> - Enable/Disable Strengthening (1/0) [default=1]

--In <number>, -In <number> - Enable/Disable Inferences (1/0) [default=1]

--Ex <number>, -Ex <number> - Enable/Disable Existential Quantification (1/0) [default=1]

--Ea <number>, -Ea <number> - Enable/Disable AND-Existential Quantification

(1/0) [default=1]

--Es <number>, -Es <number> - Enable/Disable AND-Safe Assign + Existential

Quantification [default=1]

--Sa <number>, -Sa <number> - Enable/Disable Searching for Safe Assignments

(1/0) [default=1]

--Ss <number>, -Ss <number> - Enable/Disable SafeSearch (1/0) [default=1]

--Pa <number>, -Pa <number> - Enable/Disable clustering to find possible

values to variables (1/0) [default=1]

--Dc <number>, -Dc <number> - Enable/Disable Dependent Variable

Clustering (1/0) [default=1]

--Sp <number>, -Sp <number> - Enable/Disable Large Function Splitting (1/0) [default=0]

--Rw <number>, -Rw <number> - Enable/Disable Rewinding of BDDs back to their

initial state (1/0) [default=1]

--Cf <number>, -Cf <number> - Enable/Disable Clearing the Function Type

of BDDs (1/0) [default=1]

--Ff <number>, -Ff <number> - Enable/Disable Searching for the Function

Type of BDDs (1/0) [default=1]

--P3 <number>, -P3 <number> - Enable/Disable Recreating a new set of

prover3 BDDs (1/0) [default=1]

--max-preproc-time <number> - Set the time limit in seconds (0=no limit) [default=0]

--do-split-max-vars <number> - Threshold above which the Sp splits BDDs [default=10]

--ex-infer <number> - Enable/Disable Ex Quantification trying to safely infer

variables before they are quantified away (1/0) [default=1]

--gaussian-elimination <char>, - Enable/Disable Gaussian Elimination in the preprocessor (1/0)

-gauss <char> [default=’0’]
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7.6 General solver options

--brancher-presets <string> - Variables that are preset before brancher is

called. String tokens are [=|!|#|+var|-var]* [default=””]

--dependence <char> - Modify Independent/Dependent Variables (n=no change,

r=reverse, c=clear) [default=’c’]

--max-solutions <number> - Set the maximum number of solutions to search for. 0 will

cause the solver to search for as many solutions as it can find.

The algorithm does not guarantee that it reports all possible

solutions. [default=1]

--max-solver-time <number> - Set the time limit in seconds (0=no limit)

[default=0]
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7.7 SMURF Solver options

--lemma-out-file <string> - File to dump lemmas to [default=””]

--lemma-in-file <string> - File to read lemmas from [default=””]

--csv-trace-file <string> - File to save execution trace in

CSV format [default=””]

--var-stat-file <string> - File to save var stats [default=””]

--cvs-depth-breadth-file <string> - Save depth/breadth statistic [default=””]

--backjumping <number> - Enable/Disable backjumping (1/0)

[default=1]

--max-cached-lemmas <number>, - Set the maximum # of lemmas

-L <number> [default=5000]

--autarky-smurfs <number> - Use Autarky Smurfs in the solver (1/0)

[default=0]

--autarky-lemmas <number> - Use Autarky Lemmas in the solver (Currently Unavailiable) (1/0)

[default=0]

--sbj <number> - Super backjumping [default=0]

--max-vbles-per-smurf <number>, - set the maximum number variables per

-S <number> smurf [default=8]

--backtracks-per-report <number> - set the number of backtracks per report

[default=10000]

--max-brancher-cp <number> - set the choice point limit (0=no limit)

[default=0]

--brancher-trace-start <number> - number of backtracks to start the trace

(when debug=9) [default=0]

--heuristic <string>, - Choose heuristic j=LSGB, l=Chaff-like

-H <string> lemma based, i=Interactive [default=”j”]

--jheuristic-k <number>, - set the value of K [default=3.000000]

-K <number>

--jheuristic-k-true <number> - set the value of True state [default=0.000000]

--jheuristic-k-inf <number> - set the value of the inference multiplier

[default=1.000000]
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7.8 BDD WalkSAT solver options

--cutoff <number> - BDD WalkSAT number of flips per random

restart [default=100000]

--random-option <number> - BDD WalkSAT option for random walk

(1=Pick a random path to true in current BDD,

2=Randomly flip every variable in current BDD,

3=Randomly flip one variable,

4=Randomly flip one variable in current BDD) [default=1]

--bddwalk-heur <char> - BDD WalkSAT Heuristic (a=adaptive

novelty+, n=novelty+, r=random) [default=’a’]

--taboo-max <number> - BDD WalkSAT length of taboo list

(used in conjunction with novelty+ heuristic) [default=6]

--taboo-multi <number> - BDD WalkSAT multiplier for the probablity

of picking variables with taboo (used in conjunction with

novelty+ heuristic) [default=1.500000]

--bddwalk-wp-prob <number> - BDD WalkSAT probablity of making a

random walk (used in conjunction with novelty+ heuristic)

[default=0.100000]

--bddwalk-prob <number> - BDD WalkSAT probablity of picking second

best path (used in conjunction with novelty+ heuristic)

[default=0.100000]
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8 Reference - Initialization file

An initialization file allows the user to launch sbsat with a much abbreviated

command line. That is, the file may contain all switches and parameters that

would normally be part of the sbsat command line when it is launched. More

than one initialization file can exist to allow the user to define different settings

for different problem types by creating initialization files for each type. An

initialization file may be loaded during launch using the following:

$ sbsat --ini <path-to-initialization-file>

If only a filename is specified instead of a path, SBSAT looks in the current

directory for the file. If the --ini switch is not used, then SBSAT looks in the

user’s home directory for sbsat.ini and loads that file if it is found. If the file is

not found, the default internal settings are used. If the file exists and additional

command line options are given, those options specified on the command line

override any that appear in the initialization file.

An initialization file is a simple text file which may be created and edited

using a standard text editor or created by using the following command which

dumps the default settings, in the initialization file format, to a file whose name

the user specifies:

$ sbsat --create-ini > <user-specified-filename>

Each line of the initialization file is either whitespace or a command which

sets an internal parameter to a value. A command consists of a parameter name

on the left, followed by an ‘=’ followed by a value on the right. A comment

is any text on any line following and including the first occurrence of the ‘#’

character on that line. The sample initialization file shown in Figure 17 presets

variables 1-15 at the start of preprocessing, sets the debug output level to 3, and

changes the default preprocessing sequence to {ExDc}{ExSt}{ExPr}{{ExEs}1}.

An initialization file only needs to contain the settings the user wants modified

from the default settings.
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# Preprocessing options:

#

# Variables forced during preprocessing.

preset-variables="-1 -2 +3 -4 +5 -6 -7 -8 +9 -10 -11 +12 -13 +14 -15"

debug=3

# The preprocessing sequence

preprocess-sequence="{ExDc}{ExSt}{ExPr}{{ExEs}1}"

Figure 17: Example initialization file.

9 Reference - Input formats

Problems to be solved are typically presented to sbsat as a file formatted in

a particular way (input is also allowed from standard input). This section

describes the various input formats accepted by sbsat. The canonical format is

the most general and is described first. An important format is DIMACS CNF

which is specified in

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi

and a description is given here. Other useful formats include XOR, for handling

a rather specific type of problem where each conjunct is an xor of conjuncts,

DNF, Trace (a language used in CMU benchmarks), Prove (automatically gen-

erated by the CMU tool named BMC), and Smurf (a special form directly tied

to SBSAT data structures).

The inputs formats support up to five different types of statements and each

applicable type is described separately in a subsection of the format’s description

section. The types are as follows:

1. Comment: A comment is text beginning with a special character (de-

pending on the input format) and ending with the first newline following

that character. All comments are ignored by sbsat hence comments can

be placed anywhere as separate lines or on the same line after other line

types.

2. File Header: There is one file header and it occupies one line of the file.

It specifies the type of input format and must be placed before all other

lines except fully commented lines. The header is immediately checked by
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sbsat which then applies the appropriate parser to the remainder of the

file.

3. Boolean Function: Certain syntax, given below, is used to express a

Boolean function in a file. Arguments may be variables or Boolean func-

tions or, in some formats, references to Boolean functions. If an assign-

ment to the variables of the file results in values of T for all of a particular

subset of (possibly all) Boolean function statements then that assignment

is a solution to the problem represented in the input file.

4. Manipulator: A manipulator is a Boolean function composed from one

or more Boolean functions it takes as arguments. Its purpose is to provide

alternative, simpler, or modified forms of its input functions which will

lead to faster search.

5. Directive: A directive is a statement of control, for example, of search

or output, or of substitution. A directive is applied at the point it occurs

in the input file while the file is being parsed. A directive does not apply

to any of the input file that has not been parsed by the time the directive

is executed.

Directives, Boolean functions, and manipulators can appear in any order after

the file header.

9.1 Canonical form

This is the most general input format. Variables are represented as strings con-

taining letters, numbers, or underscore characters, mixed in any way. Boolean

functions (including manipulators), and directives can be split over many lines

of the input file (no continuation character is used). Boolean functions are as-

signed reference numbers in the order they appear in the file, beginning with

the number 1. If, say, the 10th Boolean function is to be an argument to the

24th Boolean function, then the reference ’$10’ may be used as the argument

instead of writing the entire 10th function again. Doing so wherever possible

can considerably shorten input file length, but requires writing nested functions

on separate lines. It follows that some way is needed to distinguish those func-

tions from the top-level functions (those to be conjoined as specified in the given

problem instance): the character ’*’ is used in the input file to mark a function
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as a top-level function and appears as the first character of the first line specify-

ing such a function. A solution to the problem defined in a file is an assignment

satisfying those functions (including manipulators) which are preceeded by ’*’

(values of all non-starred functions and non-starred manipulators do not mat-

ter). If no function is preceeded by a ‘*’, all functions are considered top level

functions.

Lines that get a $ number start with var, not, and, nand, or, nor, xor, equ,

same, imp, nimp, ite, gcf, strengthen, prune, exist, universe, truth_table,

minmax, safe, a single positive or negative variable, a function previously defined

in a #define statement, or a single number with a $ in front of it. Lines that do

not get a $ number start with initialbranch, print_tree, or pprint_tree,

#define, print_xdd, or print_flat_xdd.

9.1.1 Comments

A comment begins with the special character ’;’.

9.1.2 File Header

The header conforms to the DIMACS standard which is as follows:

p bdd <#vars> <#functions>

The letter ’p’ must appear at the start of the header. The second header token,

which in this case is ’bdd’, identifies the input format. The header contains

two integer fields: <#vars> is the number of distinct variables contained in the

file; <#functions> is the number of Boolean functions (including manipulators)

contained in the file. The following is an example of a valid header for a file

containing 97 functions composed from 56 distinct variables.

p bdd 56 97

9.1.3 Boolean functions

A Boolean function may be expressed two ways:

<variable>

<function-identifier> ( arg1 arg2 ... )
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where <function-identifier> is one of the following predefined function iden-

tifiers, and arg# is either a variable, a Boolean function or a reference to a

Boolean function. The token <variable> is a character string and its use in an

input file creates a simple Boolean function which is identified by that name, the

value of which is the value of the variable named <variable>. Every Boolean

function is implemented as a BDD (see Section 10.1) and may have value T, or

F, or have no value, depending on its arguments: values of Boolean functions

are given as follows for each <function-identifier>.

Remark: Most functions take an arbitrary number of arguments, hence, paren-

thesis are necessary. Commas are considered whitespace and are ignored, how-

ever, their use is recommended to enhance the human readability of input files.

VAR

Variables may be defined as Boolean functions using VAR followed by

a single integer argument, which identifies the created variable. The

use of VAR is now deprecated and its use is discouraged but it remains

supported (for now) for the benefit of early users. It is now assumed

that all unknown valid character strings, not previously defined, and

unless preceded by a ‘$’, be defined as single variable Boolean functions..

All integers preceded by a ’$’ refer to previously defined functions or

manipulators instead of variables.

NOT

The unary Boolean function NOT has a value equal to that of the com-

plement of its single argument. A variable may also be complemented

by using ’-’ in place of NOT (functions cannot be complemented in this

way). Examples are:

not(x32)

-x32

ITE

The ternary Boolean function ITE has the value of its second argument

if its first argument has value T, and has the value of its third argu-

ment if its first argument has value F. Examples of this function are the

following:

ite(ite( x3, $5, -x5), x4, x7)
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AND

This Boolean function has value T if all its arguments have value T and

has value F if at least one argument has value F. Examples of its use are

as follows:

and(x1, x2, x3, x4)

and(-x1,

and(x2, x3, $4),

x5, $6, x7)

NAND

This Boolean function has value F if all its arguments have value T and

has value T if at least one argument has value F.

OR

This Boolean function has value F if all its arguments have value F and

has value T if at least one argument has value T.

NOR

This Boolean function has value T if all its arguments have value F and

has value F if at least one argument has value T.

XOR

This Boolean function has value F if an even number of its arguments

have value T and has the value T otherwise.

EQU

This Boolean function has value T if an even number of its arguments

have value F and has the value F otherwise. This is the negation of XOR

SAME

This Boolean function has value T if all of its arguments have the same

value, either T or F, and has the value F otherwise.

IMP
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As a binary Boolean function, imp has value T if either both its argu-

ments have value T or if its second argument has value F and has value F

if its first argument has value F and second argument has value T. When

given more than two arguments, scoping is done from left to right. For

instance, imp(x1, x2, x3) is equivalent to imp(imp(x1, x2), x3).

NIMP

As a binary Boolean function, imp has value F if either both its argu-

ments have value T or if its second argument has value F and has value

T if its first argument has value F and second argument has value T.

When given more than two arguments, scoping is done from left to right.

For instance, nimp(x1, x2, x3) is equivalent to nimp(nimp(x1, x2),

x3).

9.1.4 Manipulators

GCF

The syntax for this manipulator is

gcf ( <function> <cofactor> )

where <cofactor> and <function> are both Boolean functions or vari-

ables. The Boolean function returned by gcf is the Generalized Co-

factor of <function> with respect to <cofactor>. See Section 10.3 for

a description of generalized cofactor and when it might be useful.

STRENGTHEN

The syntax for this manipulator is

strengthen ( <function>_1 <function>_2 )

where <function>_1 and <function>_2 are both Boolean functions

or variables. The Boolean function returned by this manipulator is

<function>_1 strengthened by <function>_2. To find out more about

strengthening see Section 10.5.

PRUNE

The syntax for this manipulator is

prune ( <function>_1 <function>_2 )
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where <function>_1 and <function>_2 are both Boolean functions

or variables. The Boolean function returned by this manipulator is

<function>_1 with branches overlapping <function>_2 pruned. That

is, if t is an assignment satisfying <function>_2 but not <function>_1,

then t also satisfies the function returned by prune. To find out more

about branch pruning see Section 10.4.

EXIST

The syntax for this manipulator is

exist ( <function> <variable> )

where <function> is a Boolean function and <variable> is a Boolean

variable that <function> depends on. This manipulator existen-

tially quantifies <variable> out of <function>. That is, let f |T be

<function> with <variable> set to T and let f |F be <function> with

<variable> set to F; then the Boolean function returned is f |T ∨ f |F .

For more information about existentially quantifying away variables see

Section 10.7.

UNIVERSE

The syntax for this manipulator is

universe ( <function> <variable> )

where <function> is a Boolean function and <variable> is a Boolean

variable that <function> depends on. This manipulator univer-

sally quantifies <variable> out of <function>. That is, let f |T be

<function> with <variable> set to T and let f |F be <function> with

<variable> set to F; then the Boolean function returned is f |T ∧ f |F .

For more information about universally quantifying away variables see

Section 10.13.

TRUTH TABLE

Functions can be defined by their truth table using TRUTH_TABLE. Syntax

for this manipulator is

truth_table ( <#vars> <var> ... <var> <TF-string> )
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where <var> are variables, <#vars> is the number of variables in the

variable argument list, and <TF-string> is a string of symbols ’T’ and ’F’

which defines the truth table. There must be exactly 2<#vars> symbols

in the <TF-string>. An example is this:

truth_table(3 x1 x2 x3 TTFFTFFT)

MINMAX

The syntax of this function is as follows:

minmax ( <min_#> <max_#> <blank_separated_var_list> )

where the first two arguments are positive integers. This function re-

turns T if at least <min_#> and at most <max_#> of the variables in the

<..._var_list> have value T and returns F if more than <max_#> or

less than <min_#> of the variables in the <..._var_list> have value T.

The following is an example,

minmax(1, 3, x13, x12, x11, x10)

which has value T if at least 1 and no more than 3 of the variables x10,

x11, x12, x13 have value T. See the PRINT_TREE directive below to view

the truth table for this function.

SAFE

The syntax of this function is as follows:

safe ( <function> <variable> )

This function returns either a safe assigment for <variable> in

<function> if one exists. The Boolean function returned is either

equ(<variable>, T), equ(<variable>, F), T (if no safe assignment ex-

ists), or F (if <variable> is safe for both truth values T and F). For more

information about safe assignments see Section 19.

9.1.5 Directives

The syntax of a directive is

<command> ( <arg> ... )
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where <arg> are Boolean functions or manipulators or variables. The following

are commands and a description of how they apply their arguments.

INITIAL BRANCH

The directive INITIAL_BRANCH may be invoked to request that certain

variables be assigned values before any others during search. This direc-

tive is also capable of influencing which branch (the True branch or the

False branch) will be tested first, for specified variables, during search.

This directive takes as argument a list of variables. Variables in this list

may optionally be postpended with a percent sign followed immediately

by any real number between 0 and 100. The value following a percent

sign will be factored into all the search heursitics embedded into sbsat

such that a value close to 0 influences the heursitic to more often as-

sign False to the prepended variable, likewise for values close to 100; a

value of exactly 50 has no effect on the heuristic. This directive can also

take an optional first argument, a pound sign (# followed by a positive

number. This argument determines the tier used to determine the order

in which whole set of variables will be assigned values during search;

smaller numbers are given precedence. This directive is intended to be

used when some key domain-specific information suggesting a particu-

lar search order has been revealed. An example of this directive is the

following:

initial_branch (x1, x39, x5, x4, x24, x3)

This marks variables x1, x39, x5, x4, x24, x3 to be assigned values first.

The order in which these variables are selected for search completely de-

pends on the search heuristic employed: all that initial_branch does

here is prevent variables which are not listed from being selected for as-

signment during search until all the listed variables have values. It is

possible for a non-listed variable to be inferred, however. This direc-

tive is the only one which requires parenthesis around its argument list.

Wildcards (standard regular expressions) are allowed: ’*’ matches any

combination of alphabetic, numeric, and underscore characters. Thus,

initial_branch(x3*3) means branch on all variables beginning with

x3 and ending with 3.
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The order in which wild card variables are searched is determined by the

search heuristic. There can be multiple initial_branch directives in

one. An example of this is the following:

initial_branch (#1, x1, x39%20.5, x5)

initial_branch (#2, x4, x24, x3%80.25)

This marks variables x1, x39, and x5, to be assigned values first and vari-

ables x4, x24, x3 to be assigned values second; all variables not listed will

be considered by the heuristic after those appearing in initial_branch

have been assigned values. Also, the heuristic value of variable x39 will

be influenced such that it is more likely be assigned the value False,

likewise x3 is more likely be assigned the value True.

#DEFINE

A rudimentary macro facility. The syntax is the following:

#define <pattern> # <Boolean-function>

where <pattern> is a <function-identifier> and argument list en-

closed in parentheses. Wherever the <pattern> is matched in the input

file, the <function-specifier> is substituted with arguments corre-

sponding to those used in the <pattern>. All the <pattern> arguments

must be used in the <function-specifier> and all the parameters used

in <function-specifier> must be arguments in <pattern>. For exam-

ple,

#define slide(x1, x17, x15, x33, x40)

# equ(xor(x1, and(-x17, x33),ite(x15, or(x33, -x40), -x33)))

substitutes the equ... function for slide.... See Figure 9, Page 19 for

the completion of this example. All #define macros are effective after

they are defined in the file. Built-in functions may not be redefined using

#define. Thus,

#define and(x, y, z) # or(x, y, z)

causes an error message to occur

.

PRINT TREE
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The PRINT TREE function takes one Boolean function, extension or

manipulator as argument and prints an unfolded BDD representation

(tree form) of that function, top down, to standard output. All func-

tion prints are displayed before the solution. In the printed tree, the

left branch is the T branch and the right branch is the F branch. For

example,

print_tree(or(4, 5, -6))

prints the following to standard output:

-----------------------------------------------------------

6

5 T

T 4

T F

-----------------------------------------------------------

ORDER

It is possible to control the variable ordering of the BDDs. Variables are

ordered based on where they first occur in the input file. The ordering

can be controlled by using the order directive, for example:
order(a, b, c, d)

assuming that a, b, c, and d have not previously been used in the file,

forces variable a to occur as or near the leaves of printed trees, and d to

occur as or near the root. For example, the lines
order(b, a, d, c)

print_tree(minmax(1, 3, a, b, c, d))

prints the following to standard output (assuming a, b, c, and d have

not been previously used):

----------------------------------------------------------------

c

d d

a T T a

b T T b

F T T F

----------------------------------------------------------------
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PPRINT TREE

Does the same thing as PRINT_TREE except the output is in text form

instead of graphical form with ite used to indicate T and F branches.

For example,

pprint_tree(or(4, 5, -6))

prints to standard output:

-------------------------------------------------------

ite 6

ite 5

T

ite 4 T F

T

-------------------------------------------------------

PPRINT XDD

Does a similar thing to PRINT_TREE except the output is shown in terms

of nested ANDs and XORs. For example,

print_xdd(or(4, 5, -6))

prints to standard output:

-------------------------------------------------------------------

x[6]∗(x[5]∗(x[4] + 1) + x[4] + 1) + 1 = 1

-------------------------------------------------------------------

PPRINT FLAT XDD

Does the same thing as PRINT_XDD except the function is displayed in

its unnested form. For example,

print_flat_xdd(or(4, 5, -6))

prints to standard output:

-----------------------------------------------------------------------

x[4]∗x[5]∗x[6] + x[5]∗x[6] + x[4]∗x[6] + x[6] = 0

-----------------------------------------------------------------------
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9.2 CNF format

This input format is only for expressing Conjunctive Normal Form or “product

of sums” formulas. Variables are represented as positive integers. All top-level

Boolean functions are disjunctions or clauses. There is one clause per line of

file. A solution to the problem defined in a file is an assignment satisfying all

clauses. There are no manipulators or directives in this format. This format is

well-known as the DIMACS format10.

9.2.1 Comments

A comment begins with the special character ’c’.

9.2.2 File Header

The header conforms to the DIMACS standard which is as follows:

p cnf <#vars> <#clauses>

The letter ’p’ must appear at the start of the header. The second header token,

which in this case is ’cnf’, identifies the input format. The header contains

two integer fields: <#vars> is the number of distinct variables contained in the

file; <#clauses> is the number of clauses contained in the file. The following is

an example of a valid header for a file containing 97 clauses composed from 56

distinct variables.

p cnf 56 97

9.2.3 Boolean functions

The only Boolean functions accepted in this format are clauses. A clause has

the following syntax:

[-]<var> ... [-]<var> 0

where <var> is a variable and ’-’ in front of a <var> makes it a negative literal

and no ’-’ in front of <var> makes it a positive literal. There are no commas

10See ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi for
a complete description.
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in the variable list and the list is terminated with a 0. Variables may appear

in a variable list in any order and are separated by blank characters. For an

example see Figure 3, Page 13.

9.3 DNF format

This input format is only for expressing Disjunctive Normal Form or “sum of

products” formulas. Variables are represented as positive integers. All top-level

Boolean functions are conjunctions, called terms. There is one term per line of

file. A solution to the problem defined in a file is an assignment satisfying at least

one term. There are no manipulators or directives in this format. This format

is similar to the well-known DIMACS format11. Internally, DNF problems are

transformed to CNF then solved as CNF problems.

9.3.1 Comments

A comment begins with the special character ’c’.

9.3.2 File Header

The header conforms to the DIMACS standard which is as follows:

p dnf <#vars> <#terms>

The letter ’p’ must appear at the start of the header. The second header token,

which in this case is ’dnf’, identifies the input format. The header contains

two integer fields: <#vars> is the number of distinct variables contained in the

file; <#terms> is the number of terms contained in the file. The following is

an example of a valid header for a file containing 97 terms composed from 56

distinct variables.

p dnf 56 97

9.3.3 Boolean functions

The only Boolean functions accepted in this format are conjunctions of literals,

called terms. A term has the following syntax:
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[-]<var> ... [-]<var> 0

where <var> is a variable and ’-’ in front of a <var> makes it a negative literal

and no ’-’ in front of <var> makes it a positive literal. There are no commas

in the variable list and the list is terminated with a 0. Variables may appear in

a variable list in any order and are separated by blank characters.

9.4 XOR format

This input format is intended for specialized applications involving constraints

that are exclusive-ors of conjunctions. Variables are represented as positive

integers preceeded by the character x as in x45. All top-level Boolean functions

are xors of conjunctions. A solution to the problem defined in a file is an

assignment satisfying all functions. There are no manipulators or directives in

this format.

9.4.1 Comments

A comment begins with the special character ’;’.

9.4.2 File Header

The header conforms to the DIMACS standard which is as follows:

p xor <max-var-number> <#functions>

The letter ’p’ must appear at the start of the header. The second header token,

which in this case is ’xor’, identifies the input format. The header contains two

integer fields: <max-var-number> is the maximum variable number contained in

the file; <#functions> is the number of Boolean functions contained in the file.

The following is an example of a valid header for a file containing 97 functions

composed from variables x1 to x56.

p xor 56 97
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9.4.3 Boolean functions

Each line of the file is a function. Each line has the following form:

<grouping> ... <grouping> = [0|1]

where <grouping> has the form

<variable>...<variable>

and <variable> has the form

x<number>

where <number> is a positive integer no greater than <max-var-number>. The

following are examples:

x1 x2 x3 = 1

x1x2x3 = 1

x1x2x3 x2x3 x4x5x6 = 0

sbsat interprets a line as an xor of conjunctions, each consisting of variables

identified in a <grouping>. The following table shows the above as expressions

in canonical form:

This ... is equivalent to this

x1 x2 x3 = 1 equ( xor(1, 2, 3), T)

x1x2x3 = 1 equ( and(1, 2, 3), T)

x1x2x3 x2x3 x4x5x6 = 0 equ(xor(and(1, 2, 3), and(2, 3), and(4, 5, 6)), F)

9.5 Trace format

Trace files follow a format inspired by the dlx processor verification examples

made available by Carnegie Mellon University. A trace file has three sections:

input, output, and structure. Format for the entire file is shown in Figure 18.

The field <name> is any string of contiguous characters naming the module. We

regard the input and output sections as the file header and the structure section
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MODULE <name>

INPUT <var>, ..., <var>;

OUTPUT <var>, ..., <var>;

STRUCTURE

<statement>;

...

<statemnt>;

ENDMODULE

Figure 18: Trace format specification

as the place where functions are specified. The three sections are described

below. There are no directives or manipulators in this format.

9.5.1 Comments

A comment begins with the special character ’;’. This is a departure from the

use of ’;’ in the actual CMU trace format.

9.5.2 File Header

The file header consists of the input and output sections. Both sections list

variables which appear in functions specified in the structure section. Specifi-

cation of these sections is shown in Figure 18. The field <var> is the name of

a variable and uses any combination of alphabetic and numeric characters and

underscore. A variable list may be continued over several lines. Its terminating

character is ’;’.

9.5.3 Boolean functions

Boolean functions are specified in the structure section which consists of any

number of statements (<statement> in Figure 18), each terminated by ’;’. The

keywords STRUCTURE and ENDMODULE must appear by themselves on separate

lines. A statement is either

are_equal(<var>, <var>)

which forces both <var>s to have the same value, or
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<var> = new_int_leaf([0|1])

which forces <var> to have value F or T if the argument of new_int_leaf is 0

or 1, respectively, or

<var> = <function-identifier>(<var>, ..., <var>)

where <function-identifier> is one of not, and, nand, or, nor, equ, xor,

imp, limp, lnimp, rimp, rnimp, ite. The variable lists of all but ite and not

can be arbitrarily long. The argument lists for ite and not must have exactly

three and exactly one argument(s), respectively. Observe there is no nesting of

functions as in the case of the canonical form. Instead, an equality is defined

and the leftside (temporary) variable, not appearing in either input or output

section, is used as argument in other functions. It is permissable to reference

a variable that appears for the first time further ahead in the file. A solution

is an assignment to input variables which causes all functions (statements) to

have value T.

9.6 Prove format

See Section 15 for details.

9.7 Smurf format

This input format is intended for low-level truth table input. Variables are rep-

resented as positive integers. Any set of Boolean functions can be accomodated.

Each function is specified in a section of three lines: the first line numbers the

function, the second line specifies the variables that the function depends on,

the third line specifies the truth table of the function or uses function symbols

to denote commonly used functions. All function sections are separated by a

hash (’#’) character, which is itself on a separate line. A list of functions is

terminated with the character ’@’ on a line by itself at the end of the file. The

header contains a line indicating a goal value for each function. A solution to

the problem defined in a file is an assignment causing all Boolean functions to

attain their goal value. There are no comments, manipulators, or directives in

this format.
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9.7.1 File Header

The file header consists of three lines. The first line begins with a number equal

to the number of input variables. On the second line is the number of functions

(that is, function sections), on the fourth line is a 0-1 vector, represented as a

string of 0’s and 1’s, which specifies goal values for each of the functions. An

example is the following:

5 # Number of Input Variables

6 # Number of Functions

110101 # Output values

for a file with variables numbered 0-4 and 6 output functions.

9.7.2 Boolean functions

Each Boolean function is represented by a three line section of the input file.

All function sections are separated by the character ’#’. A ’#’ also separates the

header from the first function section. The format of a function section is the

following:

<number>

<var> ... <var> -1

[ <truth_table> | <function_identifier> <polarity_list> ]

The first line of each function section is a number which is the identity of the

function, or function number. Typically, function numbers are assigned in the

order the functions appear in the file, beginning with 1. The second line of a

function section is a blank separated list of variables, terminated with -1. The

third line may be either a truth table or a function identifier and polarity list.

One of two possible formats for the third line is a truth table. A truth table

is a string of 0’s and 1’s, the number of which must be 2#inp where #inp is

the number of variables on the second line of the function section. Each 0-1

character represents the function’s value given a particular assignment of inputs

values: the ith 0-1 character in the truth table string (counting from the left

starting with 0) is the function value given an input assignment matching the

bits of the binary representation for i where the least significant bit corresponds

to the value assigned to the leftmost variable of the second line and a bit value
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of 0 (1) represents an assignment of F (T). An example of a function section

with a truth table is the following:

2

8 9 2 4 -1

1001011011110000

This function has a value F if, for example, variable 8 has value T and variables

2,9, and 4 have value F. This function has value T if, for example, variables 2

and 8 have value T and variables 4 and 9 have value F.

Another possible format for the third line of a function section is the speci-

fication of a function identifier and polarity list. The intention of this format is

to allow compact specification of commonly used functions (especially in circuit

problems) with quite a few arguments that would otherwise require extremely

large truth tables. Function identifiers accepted are: and=, or=, and plainor.

The identifier plainor correspond to the “or” function described in Section 2.2.

Identifiers with = equate a single variable on the left of the = with a simple

expression on the right of the type indicated by the identifier. For example,

and= corresponds to a function of the form:

<var> = and(<var>, ... <var>)

This function has value T if and only if the value of the variable on the left of =

is the same as the logical “and” of the variables on the right of =. For identifiers

with =, the polarity list is a string of characters from the set {0 , 1 , 3} with

exactly one 3. The number of characters is the number of variables identified

on the second line of the function section and each character corresponds to

an input variable: the leftmost character corresponding to the leftmost input

variable. The ’3’ identifies the input variable that is on the left side of =. The

remaining 0’s and 1’s determine the polarity of the variables on the right side

of =. An example of a function section with function identifier containing = is

the following:

41

4 11 12 186 187 188 189 193 382 -1

and= 011000031

This would be identical to the following:

193 = and(-4, 11, 12, -186, -187, -188, -189, 382)
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4 # number of variables

4 # number of functions

1101 # output vector

#

0

1 2 3 -1

00110110

#

1

1 2 4 -1

and= 130

#

2

2 3 4 -1

or= 311

#

3

1 2 3 -1

11100010

@

Figure 19: A Smurf formatted file

If this function were to have a truth table instead of and=, the truth table would

have 512 characters. A similar description applies to the polarity list of func-

tion identifiers with = except that no ’3’ exists in such lists. Figure 19 shows an

example of a Smurf formatted file: for the problem depicted the assignment of

T to variable 2 and F to all other variables is a solution.
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10 Reference - Preprocessing

Top-level Boolean functions are expressed internally as Binary Decision Dia-

grams or BDDs. This allows the use of a number of new and old BDD operations

to be used to, in some sense, reduce the complexity of an input problem before

applying search. A simple description of BDDs is given and that is followed by

a description of the preprocessing operations made available for input problem

reduction.

10.1 Binary Decision Diagrams (BDDs)

A Binary Decision Diagram (BDD) is a rooted, directed acyclic graph. A BDD is

used to compactly represent the truth table, and therefore complete functional

description, of a Boolean function. Vertices of a BDD are called terminal if

they have no outgoing edges and are called non-terminal otherwise. There is

one non-terminal vertex, called the root, which has no incoming edge. There

is at least one and there are at most two terminal vertices, one labeled 0 and

one labeled 1. Non-terminal vertices are labeled to represent the variables of

the corresponding Boolean function. A non-terminal has exactly two outgoing

edges, labeled T and/or F, and the vertices incident to edges outgoing from

vertex v are called true(v) and false(v), respectively. Associated with any non-

terminal vertex v is an attribute called index(v) which satisfies the properties

index(v) > max{index(true(v)), index(false(v))} and index(v) = index(w)

if and only if vertices v and w have the same labeling (that is, correspond to

the same variable). Thus, the index attribute imposes a linear ordering on the

variables of the BDD.

A Reduced Ordered Binary Decision Diagram (ROBDD) is a BDD such that:

1) There is no vertex v such that true(v) = false(v); 2) The subgraphs of two

distinct vertices v and w are not isomorphic. A ROBDD represents a Boolean

function uniquely in the following way. Define f(v), v a vertex of the ROBDD,

recursively as follows:

1. If v is the terminal vertex labeled F, then f(v) = F ;

2. If v is the terminal vertex labeled T, then f(v) = T ;

3. Otherwise, if v is labeled x, then f(v) = (x∧f(true(v)))∨(¬x∧f(false(v))).
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Figure 20: A BDD representing (x1 ∨¬x3)∧ (¬x1 ∨x2)∧ (¬x1 ∨¬x2 ∨x3). The
topmost vertex is the root. The two bottom vertices are terminal vertices. Edges
are directed from upper vertices to lower vertices. Vertex labels (variable names)
are shown inside the vertices. The true branch out of a vertex is identified with
0. The false branch is identified with 1. The index of a vertex is, in this case,
the subscript of the variable labeling that vertex.

Then f(root(v)) is the function represented by the ROBDD. Observe that a

Boolean function has different ROBDD representations, depending on the vari-

able order imposed by index, but there is only one ROBDD for each ordering.

Thus, ROBDDs are known as a canonical representation of Boolean functions.

Observe also that a path from root to terminal in a ROBDD corresponds to one

or more rows of a truth table associated with the function represented by the

ROBDD: the labels of the vertices encountered on the path are the variables

and their assigned values are determined from the outgoing edges traversed, the

assignment being T (F) if the true (false) edge is taken, respectively. The col-

lection of all paths specifies the truth table completely. Although ROBDDs are

actually used internally in SBSAT, they are referred to as BDDs in this manual.

Figure 20 shows an example of a BDD and the function it represents. See the

data structures section for details on how the BDDs are implemented in SBSAT.

The following are some simple BDD operations that are used by preprocessing

operations which are described in subsequent sections.

A BDD is constructed by attaching BDDs hT and hF , representing a true
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and a false branch, respectively, to a vertex v with some labeling x representing

the root. We may think of the operation to do this as being the following, in

pseudo C++ style:

BDD ite(variable x, BDD hT, BDD hF);

That is, ite returns a BDD with root v labeled x and such that hT = true(v) and

hF = false(v). But the actual construction is such as to avoid building BDDs

which are isomorphic to existing ones, so the following is used to implement the

construction instead (it is too complicated to state here):

BDD find_or_add_node (variable x, BDD hT, BDD hF);

This operation returns an existing BDD if there is one that matches ite(x,

hT, hF) already, and otherwise builds a new BDD with root v labeled x, true

branch hT and false branch hF (that is, false(v) = hF and true(v) = hT ). The

BDDs hT and/or hF may have to be constructed as well.

The following two simple operations are used several times in describing

important BDD operations in subsequent sections. They are given in pseudo

C++ style:

BDD ReduceT (variable x, BDD f) {

if (root(f) == x) return true(root(f));

return f;

}

BDD ReduceF (variable x, BDD f) {

if (root(f) == x) return false(root(f));

return f;

}

ReduceT(x,f) returns f constrained by the assignment of T to variable x and

ReduceF(x,f) returns f constrained by the assignment of F to the variable x.

10.2 Pattern Matching: CNF

The current version of sbsat supports clustering only when CNF input is given.

Our clustering algorithm is influenced solely by observing patterns in CNF for-

mulas due to the dlx benchmarks from CMU. Those benchmarks, before trans-

lation to CNF, consist of numerous lines almost all of which have a form similar
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to one of the following:

x = and(v1, v2, ..., vk)

x = or(v1, v2, ..., vk)

x = ite(v1, v2, v3)

A pass is made through all clauses of a given CNF formula looking for patterns

similar to the following:

(v1 ∨ v̄2 ∨ v̄3 ∨ ... ∨ v̄k)

(v̄1 ∨ v2) (v̄1 ∨ v3) ... (v̄1 ∨ vk)

which in this case represents the first of the three expressions above. Clauses

equivalent to the second expression are similar (one large clause and several

binary clauses) differing only in which literals are negated. If a set of clauses

matching the form above is found, then those clauses are replaced by a single

BDD representing the corresponding x = and(...) or x = or(...) expression. In

the case of the ite(...) expression a pattern of six clauses of the following form:

(v1 ∨ v2 ∨ v̄4) (v1 ∨ v̄2 ∨ v̄3) (v̄1 ∨ v̄2 ∨ v3) (v̄1 ∨ v2 ∨ v4)

is replaced by a BDD representing the third expression above. In addition, if

such a pattern is found the following two clauses may also be removed from the

original CNF formula during the clustering operation without consequence:

(v1 ∨ v̄3 ∨ v̄4) (v̄1 ∨ v3 ∨ v4)

Any BDD constructed in this way is marked with a special function identifier

so that the corresponding Smurf will be smaller than otherwise.

10.3 Generalized Cofactor (GCF)

The generalized cofactor operation, denoted by gcf here and also known as

constrain in the literature, uses sibling substitution to reduce BDD size. How-

ever, unlike Prune, it can produce BDDs far larger than the original. Given two

functions, f and c, the function g = gcf(f, c) is such that f ∧ c is the same as

g ∧ c. In the process, g may be somehow reduced compared to f as is the case
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for Prune. Unlike Prune, the following is true as well:

Given Boolean functions f1, ..., fk, for any 1 ≤ i ≤ k, f1 ∧ f2 ∧ ... ∧ fk is

satisfiable if and only if gcf(f1, fi)∧ ...∧ gcf(fi−1, fi)∧ gcf(fi+1, fi)∧ ...∧

gcf(fk, fi) is satisfiable. Moreover, any assignment satisfying the latter can

be extended to satisfy f1 ∧ ... ∧ fk.

This means that, for the purposes of a solver, generalized cofactoring can

be used to eliminate one of the BDDs among a given conjoined set of BDDs:

the solver finds an assignment satisfying gcf(f1, fi) ∧ ... ∧ gcf(fk, fi) and then

extends the assignment to satisfy fi, otherwise the solver reports that the in-

stance has no solution. However, unlike Prune, generalized cofactoring cannot

by itself reduce the number of variables in a given collection of BDDs. Other

properties of the gcf operation are:

1. f = c∧gcf(f, c) ∨ ¬c∧gcf(f,¬c).

2. gcf(gcf(f, g), c) = gcf(f, g ∧ c).

3. gcf(f ∧ g, c) = gcf(f, c)∧ gcf(g, c).

4. gcf(f ∧ c, c) = gcf(f, c).

5. gcf(f ∧ g, c) = gcf(f, c)∧ gcf(g, c).

6. gcf(f ∨ g, c) = gcf(f, c)∨ gcf(g, c).

7. gcf(f ∨ ¬c, c) = gcf(f, c).

8. gcf(¬f, c) = ¬ gcf(f, c).

9. If c and f have no variables in common and c is satisfiable then gcf(f, c) =

f .

Care must be taken when cofactoring in “both” directions (exchanging f for

c). For example, f ∧ g ∧ h cannot be replaced by gcf(g, f) ∧ gcf(f, g) ∧ h since

the former may be unsatisfiable when the latter is satisfiable.

The pseudo C++ description of gcf is as follows:

BDD gcf (BDD f, BDD c) {

if (f == F || c == F) return F;
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Figure 21: Generalized cofactor operation on f and c as shown. In this case the
result is more complicated than f . The variable ordering is x1, x2, x3, x4.

if (c == T || f == T) return f;

let xm = index−1(min{index(root(c)), index(root(f))});

// xm is the top variable of f and c

if (ReduceF (xm, c) == F) return gcf(ReduceT (xm, f), ReduceT (xm, c));

if (ReduceT (xm, c) == F) return gcf(ReduceF (xc, f), ReduceF (xc, c));

let hT = gcf(ReduceT (xm, f), ReduceT (xm, c));

let hF = gcf(ReduceF (xm, f), ReduceF (xm, c));

if (hT == hF ) return hT ;

return find_or_add_node(xm, hT , hF );

}

Figure 21 presents an example of its use illustrating the possibility of increasing

BDD size. Figure 22 presents the same example after swapping x1 and x4 under
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Figure 22: Generalized cofactor operation on the same f and c of Figure 21 and
with the same variable ordering but with x1 and x4 swapped. In this case the
result is less complicated than f .

the same variable ordering and shows that result produced by gcf is sensitive to

variable ordering. Observe that the functions produced by gcf in both Figures

have different values under the assignment x1 = T , x3 = T , and x4 = F . Thus,

the function returned by gcf depends on the variable ordering as well.

10.4 Branch Pruning

Branch pruning is an operation on two BDDs. The intention is to remove paths

from one BDD which are made irrelevant by the other BDD. The following

specifies how this is done in pseudo-C++ style:

BDD Prune (BDD f, BDD c) {

if (c == T || f == F || f == T) return f;

if (c == ¬f) return F;

if (c == f) return T;
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// f and c have a non-trivial relationship

let xf = root(f); // xf is a variable

let xc = root(c); // xc is a variable

if (index(xf) > index(xc) return Prune(f, ExQuant(c, xc));

if (ReduceF (xf, c) == F) return Prune(ReduceT (xf, f), ReduceT (xf, c));

if (ReduceT (xf, c) == F) return Prune(ReduceF (xf, f), ReduceF (xf, c));

let hfT
= Prune(ReduceT (xf, f), ReduceT (xf, c)); // hfT

is a BDD

let hfF
= Prune(ReduceF (xf, f), ReduceF (xf, c)); // hfF

is a BDD

if (hfT
== hfF

) return hfT
;

return find_or_add_node(xf, hfT
, hfF

);

}

The procedure Prune takes two BDDs which are top-level functions as input

and returns a BDD which can replace the BDD of argument f at the top-level.

Figure 23 shows an example.

Branch pruning can reveal inferences but this depends on the variable or-

dering. Figure 24 shows Prune applied to two BDDs with no result. BDDs

representing the same two functions but under a different variable ordering are

pruned in Figure 25 revealing the inference x3 = F .

Branch pruning is similar to a procedure called generalized cofactor or con-

strain (see Section 10.3 for a description). Both Prune(f, c) and gcf(f, c) agree

with f on interpretations where c is satisfied, but are generally somehow simpler

than f . Both are highly dependent upon variable ordering, so both might be

considered“non-logical.” Branch pruning is implemented in SBSAT because the

BDDs produced from it tend to be smaller. In any case, unlike for gcf, BDDs

can never gain in size using branch pruning.

There appear to be two gains to using branch pruning. First, it can make

Smurfs smaller (see Section 11.1 for information about Smurfs). Second, it

often appears, by avoiding duplicated information, to make the LSGB search

heuristic’s evidence combination rule work better.

On the negative side, it can, in odd cases, lose local information. Although it

may reveal some of the inferences that strengthening would (see below), branch

pruning can still cause the number of choicepoints to increase. Both these issues

are related: branch pruning can spread an inference that is evident in one BDD

over multiple BDDs (see Figure 26 for an example).
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Figure 23: Example of prune. Procedure Prune is applied to the left two BDDs
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Figure 25: But changing the variable order results in an inference from pruning
the two functions in Figure 24.
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Figure 26: Example of branch pruning spreading an inference from one BDD
to another. If x2 is assigned 0 in f then x4 = 0 and x3 = 0 are inferred. After
applying Prune to f and c and replacing f with f ′, to get the inference x3 = 0
from the choice x2 = 0 visit c to get x4 = 0 and then f ′ to get x3 = 0. Thus,
branch pruning can increase work if not used properly. In this case, pruning in
the reverse direction leads to a better result.

10.5 Strengthening

This binary operation on BDDs helps reveal inferences that are missed by branch

pruning due to its sensitivity to variable ordering. Given two BDDs, b1 and b2,

strengthening conjoins b1 with the projection of b2 onto the variables of b1: that

is, b1 ∧ ∃~xb2, where ~x is the set of variables appearing in b2 but not in b1.

Strengthening each bi against all other bjs sometimes reveals additional infer-

ences or equivalences as above. Figure 27 shows an example. The following is

pseudo C++ code implementing strengthening:

BDD Strengthen (BDD b1, BDD b2) {

let ~x = {x : x ∈ b2, x /∈ b1};

for all (x ∈ ~x) b2 = ExQuant(b2, x);

return b1 ∧ b2;

}

Strengthening is a way to pass important information from one BDD to

another without causing a size explosion. No explosion can occur because before

b1 is conjoined with b2, all variables in b2 that don’t occur in b1 are existentially

quantified away. If an inference (of the form x = T , x = F , x = +y, or

x = −y) exists due to just two BDDs, then strengthening those BDDs against

each other (pairwise) can“move”those inferences, even if originally spread across

both BDDs, to one of the BDDs. Because strengthening shares information

between BDDs it can be thought of as sharing intelligence and “strengthening”
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Figure 27: ...then conjoin the two BDDs. Inference revealed is x3 = F .

the relationships between functions; the added intelligence in these strengthened

functions can be exploited by a smart search heuristic. We have found that,

in general, strengthening decreases the number of choicepoints when used in

conjunction with the LSGB heuristic, though in strange cases it can also increase

the number of choicepoints. We believe this is due to the delicate nature of some

problems where duplicating information in the BDDs leads the heuristic astray.

Strengthening may be applied to CNF formulas and in this case it is the same

as applying Davis-Putnam resolution selectively on some of the clauses. When

used on more complex functions it is clearer how to use it effectively as the

clauses being resolved are grouped with some meaning. Evidence for this comes

from from examples from Bounded Model Checking (see Section 16).

10.6 Inferences

At BDD build time, meaning every time a BDD is modified by any preprocessing

function, inferences are collected and attached to every pertinent node of the

BDDs. This makes it a very simple process to check a BDD for inferences:
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just look at the list attached to the top node of any BDD and you’ll see it’s

inferences. There are 4 types of inferences in the form of x = T , x = F , x = y,

x = −y. As soon as any BDD has inferences to give, it’s inferences are applied

to every applicable BDD.

10.7 Existential quantification

A Boolean function which can be written

f(x,~g) = (x ∧ h1(~g)) ∨ (¬x ∧ h2(~g))

can be replaced by

f(~g) = h1(~g) ∨ h2(~g)

where ~g is a list of one or more variables. There is a solution to f(~g) if and only

if there is a solution to f(x,~g) so it is sufficient to solve f(~g) to get a solution

to f(x,~g). Obtaining f(~g) from f(x,~g) is known as existentially quantifying x

away from f(x,~g). This operation is efficiently handled if f(x,~g) is represented

by a BDD. However, since problems handled by SBSAT include conjunctions of

functions and therefore“conjunctions”of BDDs, existentially quantifying away a

variable x succeeds easily only when only one of the “conjoined” BDDs contains

x. Thus, this operation is typically used in conjunction with other preprocessing

options for maximum effectiveness.

The following is a pseudo C++ implementation (∨ denotes the “or” of two

BDDs):

BDD ExQuant (BDD f, variable x) {

if (root(f) == x) return true(root(f))∨false(root(f));

if (index(x) > index(root(f))) return f; // If x is not in f do nothing

let hfT
= ExQuant(true(root(f)), x);

let hfF
= ExQuant(false(root(f)), x);

if (hfF
== hfT

) return hfT
;

return find_or_add_node (root(f), hfT
, hfF

);

}

Although this operation itself can uncover inferences (see, for example, Fig-

ure 28), those same inferences are revealed during BDD construction due to the

particular way we build BDDs which includes developing inference lists for each
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Figure 28: Two examples of existentially quantifying away a variable from
a function. Functions are represented as BDDs on the left. Variable x3 is exis-
tentially quantified away from the top BDD leaving T, meaning that regardless
of assignments given to variables x1 and x2 there is always an assignment to x3

which satisfies the function. Variable x2 is existentially quantified away from
the bottom BDD leaving the inference x1 = T .

81



node (see Section 14.1). Inferences that would be caught later by existential

quantification exist in the BDD root node inference lists and may be applied

early. Therefore, existential quantification is used by sbsat primarily to assist

other operations, such as strengthening (see Section 10.5), to uncover those in-

ferences that cannot be found during BDD construction. Examples of the use

of this operation are shown in Figure 28.

Existential quantification tends to speed up searching (that is, it results in

more choicepoints per second) but tends to increase the number of choicepoints.

The reason for the latter is that the elimination of a variable may cause sub-

functions that had been linked only by that variable to become merged with the

result that the distinction between the subfunctions becomes blurred. This is

illustrated in Figure 29.

On the other hand there are fewer inferences to be made during search

(“or”ing two functions removes all the F terminals that can be) so the time per

choicepoint decreases. The speedup can overcome the lost intelligence but it is

sometimes better to turn it off. The major benefit of existential quantification

is the smaller search space.

If existential quantification is selected to occur during preprocessing (named

in the command-line preprocessing sequence), when invoked, for every variable,

the number of BDDs in which that variable is included is determined. If the

number is one, existential quantification is applied to that variable in that BDD

and the process continues until no variables are included in a single BDD. Thus,

after existential quantification, all variables are in at least two BDDs.

10.8 Clustering + Existential Quantification

This preprocessing function conjoins BDDs so that at least one variable can

be existentially quantified away from the entire collection. This operation re-

peatedly finds the variable that occurs in the least number of BDDs, conjoins

those BDDs, and, if the number of variables in the result is less than a hard-

wired constant (called MAX EXQUANTIFY VARLENGTH in the code), exis-

tentially quantifies that variable away from the resulting BDD. The operation

ends when the lowest number of BDDs a variable occurs in is greater than some

hard-wired constant (right now called MAX EXQUANTIFY CLAUSES in the

source code).
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Figure 29: Existential quantification can cause blurring of functional relation-
ships. The top function is seen to separate variables x1, x2, and x3 from x4,
x5, and x6 if x7 is chosen during search first. Existentially quantifying x7 away
from the top function before search results in the bottom function in which no
such separation is immediately evident. Without existential quantification the
assignment x8 = F , x7 = T , x6 = T reveals the inference x5 = T . With existen-
tial quantification the assignment must be augmented with x2 = F and x1 = F
(but x7 is no longer necessary) to get the same inference.
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10.9 Clustering + Existential Quantification + Safe

This process functions like ‘Clustering + Existential Quantification’ but before

a variable is quantified it is checked for a safe assignment. If a safe assignment

exists, it is recorded and applied.

10.10 Dependent variable clustering

Equations such as the following:

x = and(a, b, c, d, ...)

x = or(a, b, c, d, ...)

appear often in many applications, particularly those related to circuits. In such

a case, the BDD corresponding to the equation is conjoined with all other BDDs

containing variable x, the variable appearing on the left side of equals, and then

x is existentially quantified out of the expression entirely. For example, the

equations

x = and(a, b, c, d)

y = and(x, e, f, g)

are replaced by

y = and(a, b, c, d, e, f, g)

and x is eliminated.

As it currently exists in the tool, this operation is limited to cases where the

BDDs involved all depend on 8 or fewer variables unless the BDDs are special

functions and can be conjoined to a Smurf which is reasonably small in size.

10.11 Rewind

This function causes the current set of BDDs to be replaced with the initial

set of BDDs. SBSAT currently saves all of the inferences detected over the

course of preprocessing. After a rewind, those saved inferences are immediately

applied to the rewound set of BDDs, reducing them. This technique has been

found to be useful when working with preprocessing techniques which cause

BDDs to be built that are too big to be built into SMURFs. We first apply
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those techniques, then rewind, and then solve. This allows inferences found by

the preprocessing techniques (such as clustering) to be saved and applied to

the original set of BDDs, thus allowing the solver to operate on the original

(manageable) functions with some reductions applied, instead of on a set of

unmanageable clustered BDDs with those same reductions.

10.12 Splitter

The splitter is intended to replace large BDDs with sets of small BDDs. This is

required in two circumstances. First, one of the objectives of preprocessing is to

reveal inferences that may be used to reduce the size of the input before search is

applied. This is done by applying various BDD operations which may result in

some BDDs being fairly large. But Smurfs must be created from small BDDs.

So the large BDDs must be split into small ones which are turned into Smurfs.

This is accomplished by the splitter. Second, when using the three-address code

available from the output of the bmc tool (see Section 15), large BDDs result

and the splitter is used to create smaller ones from the larger ones so reasonable

sized Smurfs can be created from them.

The splitter can be turned on by the user with the -Sp 1 command line

option. The maximum number of variables to split on is controlled from the

command line using the --do-split-max-vars <number> switch (Page 43).

The number of variables to split on is 10 by default.

The splitter will first try to break up all big BDDs by selecting a big BDD f

and projecting f onto all 10-variable subsets of it’s variable set. We could think

of each projection fi as a weak approximation to f . We collect these projections

together and use branch pruning to simplify the collection. To “project” an f

onto a set of variables means to quantify out all variables not in that set (see

Section 10.5 for details).

Finally, see how close we’ve come to f : conjoin all these approximations fi

together, yielding f ′, and replace f with and(f, not(f ′)). If some BDDs still

exist with more than 10 variables then the splitter will break all remaining big

BDDs into clauses.
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10.13 Universe

Universally quantify a variable away from a BDD. This operation exists only in

canonical form. The pseudo C++ description of this operation is as follows:

BDD Universe (BDD f, variable x) {

if (root(f) == x) return true(root(f))∧false(root(f));

if (index(x) > index(root(f))) return f; // If x is not in f do nothing

hfT
= Universe (true(root(f)), x);

hfF
= Universe (false(root(f)), x);

if (hfT
== hfF

) return hfT
;

return find_or_add_node (root(f), hfT
, hfF

);

}
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11 Reference - Search heuristics

11.1 State Machines Used to Represent Functions (Smurfs)

Prior to searching, Boolean functions become implemented as acyclic Mealy

machines, called Smurfs (for “State Machine Used to Represent Functions”).

Smurfs help lower the overhead of searching and make complex search heuris-

tics feasible: all important data needed for the search process and able to be

computed prior to search is memoized in Smurf states and transitions for im-

mediate access during search. The inputs to a Smurf are literals that are

assumed or inferred, during search, to be true; the outputs are sets of literals

that are forced to be true (analogous to unit resolution in CNF) by the newly

assigned inputs; and the states correspond to what “portion”, or residual, of the

constraint remains to be satisfied11. Smurfs are described in Figure 30. For a

set of constraint BDDs, we compute the Smurfs for each of the separate BDDs

and merge states with equal residual functions, maintaining one pointer into the

resultant automaton for the current state of each constraint.

The Smurf structure described in the figure, for a Boolean function with

n variables, can have, in the worst case, close to 3n states. Thus, an Achilles’

heel of SBSAT can be handling long input functions. In most benchmarks, that

has not been a serious practical problem because all individual constraint are

reasonably short except12 for a small special group of functions: long clauses,

long exclusive disjunctions, and “assignments” λ0 = λ1 ∧ · · · ∧ λk and λ0 = λ1 ∨

· · ·∨λk (where the λi’s are literals). To solve the space problem for these special

functions, we create special data structures; these take little space and can

simulate the Smurfs for the functions exactly with little time loss. For a long

clause we store only (i) whether the clause is already satisfied, and (ii) how many

literals are currently not assigned truth values. Storing exclusive disjuncts is

similar. For the assignments, we store both the value (0,1, or unassigned) of the

left-hand-side literal and the number of right-hand-side literals with undefined

truth values.

11In Smurfs, each constraint implies no literals, since those would have been trapped during
preprocessing.

12as In, for example, dlx benchmark suite made available by Miroslav Velev.
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Figure 30: BDDs are preprocessed into deterministic Mealy machines called
“SMURFs.” This example explains construction. ite denotes if-then-else and
⊕ denotes exclusive or.

The Smurf above represents ite(x1, x2 ∧ (x3 ⊕ x4), x4 ∧ (x2 ⊕ x3)). It
represents, in part, BDDs for the function under all possible variable orderings
— since we cannot know in what order the brancher considers the variables.
The start state (upper left) represents the original function. On the left is
a transition from the start state labeled “x1;x2”; this means that, from that
state, on input x1, the automaton makes a transition and outputs {x2}. If
the brancher guesses, or infers, that x1 is true, it will “tell” the automaton
to branch on x1. The output of {x2} tells the brancher that x2 must also be
true — the analogue of unit inference in CNF. This transition goes to a state
labeled x3 ⊕ x4, meaning that, after x1, x2 are set to 1, what remains to be
satisfied — the residual function — is x3 ⊕ x4. On the upper right are three
transitions shown with one arrow. The first is from the start state on input
¬x2; it outputs {¬x1, x3, x4} and goes to state 1 — meaning the original BDD
is now satisfied, i.e., that there is no residual constraint to satisfy.
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11.2 Locally Skewed, Globally Balanced

Memoized information is currently tailored for the primary search heuristic

called Locally Skewed, Globally Balanced or LSGB. The weight of a Smurf

transition counts the number of literals forced on the transition, plus the ex-

pected number of literals forced below that state, where a forced literal after m

additional choices is weighted 1/Km. (K, set experimentally, is currently 3 by

default.) In Figure 30, the transition out of the start state on ¬x1 has weight

1 + (
1

K
+

1

K
+

1

K
+

1

K
)/4;

the transition out on x4,

0 + (
1

K2
+

2

K
+

1

K
+

2

K
+

2

K
+

1

K
)/6.

Computing these weights is expensive but they are memoized in Smurfs during

preprocessing and, during search, they are looked up in a table instead of being

recomputed each time they are needed.

For the special data structures defined above, the calculation above is simu-

lated. If a disjunction λ1 ∨ · · · ∨λm with k still unassigned variables were repre-

sented as a Smurf, the weight of λi is 0 (since the clause immediately becomes

satisfied, nothing more can be forced), and the weight of ¬λi is 1/(2K)k−1. This

is directly coded in the simulated Smurf. Exclusive disjunctions are similar.

Assignments are similar but break into cases; one recurrence relation is hard to

solve, so weights are precomputed as a function of the number of unassigned

λi’s and are looked up during search.

The LSGB search heuristic is similar to the “Johnson heuristic” on CNF

formulas where K = 2. The intuition is to branch toward forced inferences as

quickly as possible to narrow the search space (or get lemmas fast). To pick the

next variable to branch on: For each variable xi, compute (i) the sum S+
i of

the weights of transitions on xi out of all current Smurf states and (ii) the sum

S−
i of the weights of transitions on ¬xi. A high sum represents a high “payoff.”

For an ideal branching variable xi, both xi and ¬xi force many literals, so we

branch on the variable xi where S+
i ·S−

i is maximum. For that variable, branch

first toward the larger of S+
i , S−

i .13

13The idea of taking the product is due to Freeman.
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There are circumstances where other search heuristics are known to work

well. LSGB was intended for applications where not much is known about, or

easily determined about, the given problem. If the problem is known to have

a lot of exploitable structure, it may be better to specify a different heuristic.

We allow the experienced user some choice (see Sections 11.3 and 11.4 below

for more information). The Smurf structure admits such heuristics as well; on

a simple heuristic, it may not be needed, but (except for preprocessing time) it

does not hinder either.

In Section 16, we present benchmark problems comparing SBSAT with

LSGB to other solvers such as zChaff.

11.3 Chaff-like

11.4 User defined search heuristic
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12 Reference - Search methods

12.1 Backtracking and Lemmas

12.1.1 Lemma cache

12.1.2 Lemma effectiveness

12.2 BDD WalkSAT

12.2.1 Adaptive Novelty+

12.2.2 Novelty+

12.2.3 Random

12.3 WVF

12.4 Simple
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13 Reference - Output, results

13.1 Raw

If you use raw format, -R r the output looks as follows:

// Solution #1

-arg1 -arg2 -arg3 -arg4 x3 x2 x1 1 2 3 -5 -bob 4 -1000 22 300 -40 -400 -50

var1 var2 var3 var4 -var5 -var6

13.2 Fancy

If you use fancy format, -R f the output looks as follows:

// Solution #1

arg1 (1) val:F

arg2 (2) val:F

arg3 (3) val:F

arg4 (4) val:F

x3 (5) val:T

x2 (6) val:T

x1 (7) val:T

1 (8) val:T

2 (9) val:T

3 (10) val:T

5 (11) val:F

bob (12) val:F

4 (13) val:T

1000 (14) val:F

22 (15) val:T

300 (16) val:T

40 (17) val:F

400 (18) val:F

50 (19) val:F

var1 (20) val:T

var2 (21) val:T

var3 (22) val:T
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var4 (23) val:T

var5 (24) val:F

var6 (25) val:F

93



14 Reference - Data structures

14.1 BDD database

14.2 Smurf

14.3 Lemma database
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15 Reference - Results: making BDDs from bmc

Among the experiments we have run, those inputs relating specifically to bounded

model checking benchmarks have been obtained from the output of the bmc pro-

gram obtainable from Carnegie Mellon University. That program inputs a model

checking problem and a number of time steps and outputs a propositional logic

formula representing the BMC problem in three formats: a large propositional

logic formula, three-address code representing the parse tree for that formula,

and a CNF translation of the formula. Program bmc internally represents all

formulas recursively as

<function> = <variable>;

<function> = ¬<variable>;

<function> = <function> op <function>;

where op is one of ∨, ∧, →, ≡. The binary tree associated with such a recursion

is stored as a tree of pointers. Each node of the tree is represented as a triple of

pointers: to the left descendent, the right descendent, and the parent. A pointer

to the root of such a tree represents the output formula in three-address code.

Further processing inside bmc converts this to a CNF expression which is also

available as output. As an example, we use bmc to generate the three-address

code problems for queue benchmarks (see next section) as follows:

genqueue # > queue#

bmc -k # queue# -prove

where genqueue is part of the bmc suite and # is replaced by a number repre-

senting problem complexity. The CNF versions are created by replacing the last

line above with this:

bmc -k # queue# -dimacs

We use bmc to generate three-address and CNF inputs directly, instead of taking

already generated CNF formulas “off the shelf” so we have equivalent three-

address and CNF data. Thus, times we report for zChaff, Berkmin, and Siege

may differ from published times.

The largest propositional logic formula output by bmc is a conjunction of

smaller formulas, so the obvious course for SBSAT is to read in each of those

smaller formulas as a BDD. Nevertheless, for some of the bmc outputs, those

propositional logic formulas were much too large even to store as BDDs. Of
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course, we also did not want to use the three-address code or the CNF repre-

sentation directly, since that would negate the benefits of Smurfs which are

to retain potentially exploitable domain-specific relationships. Our current ap-

proach is successful in spite of being amazingly simplistic.

1. We read in the three-address code and recreate the large propositional for-

mula so as not to lose domain-specific information. Starting at the bottom

of this formula we start building a BDD. We use a greedy algorithm: when

the BDD gets too large (10-18 variables) we insert a new variable to repre-

sent the BDD so far, include a BDD asserting that is what the new variable

represents, replace the part we have translated with the new variable, and

continue the process. This particular translation goes against our inten-

tion of staying in the original domain, however, this simple process still

proves useful. In future research we hope to find a better algorithm.

2. To break each resultant BDD f down to a 10-variable maximum (so that

the Smurfs remain suitably small), we do the following (see also Sec-

tion 10.12):

(a) Compute all projections fi of the BDD onto 10-variable subsets of its

variable set (see Section 10.5 for the meaning of projection).

(b) Simplify the fi’s against each other and delete resultant fi’s which

become True. Below we call the final simplified fi’s f1, . . . , fk.

Note that f logically implies each fi; we can think of them as “approxi-

mations” to f , in the sense that each is false on some, but probably not

all, of the truth assignments on which f is false.

(c) Recall that the goal is to replace f with a set of smaller BDD’s. Now

f is logically equivalent to the conjunction of the set {f1, f2, . . . , fk, f⋆}

where

f⋆ = (f1 ∧ f2 ∧ · · · ∧ fk) → f

(f⋆ just excludes the truth assignments where all the fi’s are true but f

is is false).

If f⋆ has ≤ 10 variables, we replace f with {f1, f2, . . . , fk, f⋆}. If f⋆ has

> 10 variables, we replace f with {f1, f2, . . . , fk} plus the translation of

f⋆ to CNF. (Typically, f⋆ is satisfied in most truth assignments, so its

CNF translation should be fairly short.)
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Again, this procedure is simplistic. We hope in the future to find a better

algorithm.
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16 Reference - Results: Experiments

SBSAT was tested on several popular benchmark suites. We also ran current

versions of Berkmin (v. 561), zChaff (v. 2003.10.9), and Siege (v. 4) on these

benchmarks for comparison. In addition, we concocted a class of random prob-

lems, called sliders, which resemble BMC problems in that copies of the same

function, each differing only in the input variables it depends on, are conjoined.

Making those functions random, in some sense, makes sliders hard. Specifically,

sliders are defined as follows:

Choose m, even, the number of constraints and the number of vari-

ables. Choose k, and l, the number of variables input to constraint

functions. Choose constraint functions f(x1, xi1 , ..., xik−2
, xm/2) and

g(x1, xj1 , ..., xjl−2
, xm/2), with variables explicitly listed, in increasing or-

der of subscript, and k and l are small compared to m. Form the constraint

set

{f(x1+h, xi1+h, ..., xik−2+h, x(m/2)+h) : 0 ≤ h ≤ m/2} ∪

{g(x1+h, xj1+h, ..., xjl−2+h, x(m/2)+h) = oh : 0 ≤ h ≤ m/2}

where each oh is independently and uniformly chosen from {0, 1}.

We find sliders appealing because they resemble some real-world problem do-

mains and because f and g can be designed to force inferences to occur only

when nearly all inputs of f and g are assigned values. This fact makes conflict

analysis useless, and is challenging to a search heuristic which is looking for

information contained in groups of variables.

At this stage of our SBSAT implementation, lemmas are handled in a rather

primitive manner so we observe an unusually low number of backtracks per

second. All experiments were run on a single processor Pentium 4, 2 GHz, with

2 GB RAM.

Our first set of results, shown in Table 1, is for the problem of verifying a long

multiplier. The circuit definition is available from Carnegie Mellon University.

All inputs are unsatisfiable. The left column of the table shows the number

of time steps involved in the verification of each benchmark (see Section 15).

Experiments were run from 4 time steps to 70 time steps. The next three

columns present the observed performance of SBSAT on three-address inputs
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SBSAT on Three-Address SBSAT on CNF zCha↑ on CNF Siege Berkmin

#time number total branch number total branch number total total total
steps choices (sec) (sec) choices (sec) (sec) choices (sec) (sec) (sec)

4 720 2.3 0.16 687 1.47 0.86 1041 0.45 0.2 0.27
8 10000 14.78 7.12 13110 41.02 39.28 33272 50.37 12.73 18.9
12 19398 42.14 27.31 31963 167.8 163.8 122522 357.1 71.61 96.9
16 17508 61.05 38.89 32969 247.3 240.4 125026 366.7 177.4 200.6
20 14077 72.63 41.65 34426 347.0 335.1 164373 585.9 165.2 178.8
24 17775 118.5 77.03 23854 270.0 252.0 214263 790.3 542.8 312.2
28 18872 134.1 81.71 23847 319.0 293.8 220045 888.2 805.4 255.0
32 18538 155.6 90.5 16718 262.9 228.3 216916 882.8 1035 334.6
36 20356 186.8 109.9 14750 278.0 233.5 269856 1055 576.8 420.4
40 19141 203.3 113.5 11703 281.1 225.0 289687 1103 845.3 442.6
50 21867 263.0 134.4 11306 378.6 286.9 472053 2032 1552 466.9
60 24985 434.1 239.4 10844 450.2 313.6 461867 2183 3340 709.2
70 26907 618.4 335.9 11270 632.8 164.3 850942 5875 2860 844.7

Table 1: SBSAT, zChaff, Siege, Berkmin times on the Long Multiplier bench-
marks

in total number of choice points, total time, and search time. The next three

columns present the same information except when translated CNF formulas

are input (see Section 15). The next two columns present the performance of

zChaff in choice points and total time and the last two columns present the

results of Siege and Berkmin on the CNF versions we generated.

Observe that SBSAT working in the user domain on three-address code

shows a slight advantage to working with the CNF translation. It is inter-

esting that in the case of CNF inputs, more preprocessing seems to result in

less searching. The fact that preprocessing varies so much from benchmark to

benchmark on CNF inputs may reflect the imprecision of guesses made when

trying to recreate domain-specific information from given CNF formulas. Such

preprocessing fluctuations are not as pronounced when three-address codes are

input to SBSAT.

Observe that zChaff and Siege cannot compete with SBSAT on long mul-

tiplier benchmarks. The problem seems to be due to encountering many more

choicepoints during search. Berkmin visits only about an order of magnitude

more choicepoints than SBSAT on CNF inputs but the slower implementation

of lemmas in SBSAT enables Berkmin to be only a fraction slower than SBSAT,

in general. The difference in choicepoints suggests the success in this case is due

to the complex search heuristic used natively in SBSAT.

Table 2 shows timings for the set of barrel benchmarks. The three-address

code equivalents were generated by applying the bmc tool to the output of the

genbarrel utility in the bmc suite. All inputs are unsatisfiable. Runs were cut

off prematurely if not completed before 3600 seconds. This is reflected as a line

(—) through a table entry.
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SBSAT on Three-Address SBSAT on CNF zCha↑ on CNF Siege Berkmin

Name number total branch number total branch number total total total
choices (sec) (sec) choices (sec) (sec) choices (sec) (sec) (sec)

barrel2 0 0.00 0.00 3 0.05 0.00 3 0.00 0.01 0.0
barrel3 0 0.11 0.00 13 0.08 0.00 48 0.00 0.01 0.0
barrel4 0 0.12 0.00 33 0.15 0.01 201 0.02 0.01 0.01
barrel5 0 0.72 0.00 354 0.66 0.21 8856 0.58 0.67 0.65
barrel6 0 1.48 0.00 1205 2.89 1.96 28110 2.81 5.97 5.56
barrel7 0 2.84 0.00 2848 11.10 8.51 66959 11.37 21.19 29.96
barrel8 0 5.05 0.00 4304 25.15 18.71 116858 31.98 136.7 298.3
barrel9 0 67.87 0.00 — — — 649532 254.6 41.24 89.27
barrel10 0 108.9 0.00 — — — 1801476 1191 86.34 184.0
barrel11 0 166.2 0.00 — — — — — 134.7 238.3
barrel12 0 243.8 0.00 — — — — — 927.1 999.3
barrel13 0 348.4 0.00 — — — — — 629.9 1049
barrel14 0 481.9 0.00 — — — — — 2122 3389
barrel15 0 655.9 0.00 — — — — — — —
barrel16 0 859.7 0.00 — — — — — — —

Table 2: SBSAT, zChaff, Siege, Berkmin times on the Barrel benchmarks

Observe that in all cases, SBSAT solved the problems constructed from the

three-address code without any search. This raises the question of whether a

BDD tool might also do as well. This appears not to be the case, since we build a

collection of BDDs of about 10 variables each and then strengthen them against

each other. The inferences resulting from this process are enough to generate

a contradiction before search is applied. We suppose a BDD tool would either

have attempted to build a single BDD from the three-address code, in which case

it would have been forced to give up due to unmanageable sizes, or it would have

used the conjoin operation instead of the strengthening operation to combine

the BDDs, probably again taking too much space. Although the time taken by

SBSAT in preprocessing is considerable, it is shown to be well-spent as SBSAT,

zChaff, Siege, and Berkmin all have difficulty with the larger CNF versions of

the barrel benchmarks. Thus, it appears staying closer to the user-domain and

preprocessing to reveal inferences early has paid off on these benchmarks.

Tables 3 and 4 show timings for a set of queue benchmarks and permute

benchmarks generated by genqueue and genpermute, respectively, from the

bmc suite. Cutoff of runs was set at 3600 seconds for the queue benchmarks and

60000 seconds for the permute benchmarks. All inputs are unsatisfiable. The

pattern observed is similar to the previous sets of runs. When SBSAT works

with three-address code timings are much better than when equivalent CNF

inputs are used. Working in three-address code gets results faster than other

solvers on equivalent CNF inputs.

The story changes on the queue invariant benchmarks of Table 5. In this case,

SBSAT experienced memory problems. In order to fit the resulting Smurfs into

memory, the BDDs upon which they were based were required to be so small

we had to change their maximum size manually, that is, after preprocessing.
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SBSAT on Three-Address SBSAT on CNF zCha↑ on CNF Siege Berkmin

Name number total branch number total branch number total total total
choices (sec) (sec) choices (sec) (sec) choices (sec) (sec) (sec)

queue4 41 0.1 0.0 19 0.11 0.00 32 0.00 0.01 0.0
queue8 651 3.04 0.07 291 0.49 0.10 561 0.05 0.04 0.05
queue12 4351 5.53 1.02 3875 5.52 4.38 11752 3.09 1.04 0.96
queue16 30835 22.3 14.7 41029 107 104 73407 62.22 30.27 32.38
queue20 311127 265 227 565559 2420 2412 698914 1874 400.4 401.0
queue22 1052750 843 798 2016859 9367 9356 — — 1886 1050
queue24 3262464 2666 2613 — — — — — — 2724

Table 3: SBSAT, zChaff, Siege, Berkmin times on the Queue benchmarks

SBSAT on Three-Address SBSAT on CNF zCha↑ on CNF Siege Berkmin

Name number total branch number total branch number total total total
choices (sec) (sec) choices (sec) (sec) choices (sec) (sec) (sec)

permute2 0 0.01 0.00 1 0.05 0.00 1 0.00 0.01 0.00
permute3 5 0.04 0.00 14 0.07 0.00 11 0.00 0.01 0.00
permute4 68 0.65 0.00 47 0.11 0.00 52 0.00 0.01 0.01
permute5 174 10.1 0.01 304 0.27 0.10 199 0.02 0.02 0.03
permute6 893 11.46 0.09 1655 1.44 1.15 2021 0.28 0.17 0.16
permute7 5537 23.24 0.81 8551 9.21 8.77 16485 9.51 2.88 1.12
permute8 64607 71.16 70.21 58051 244.1 243.2 110492 172.93 21.6 15.7
permute9 454726 686.6 685.0 471422 2575 2573 361422 1018 315 228
permute10 1311291 2064 2062 — — — 2118409 12101 3003 3891
permute11 20462503 39260 39257 — — — — — — —

Table 4: SBSAT, zChaff, Siege, Berkmin times on the Permute benchmarks

The result was an unexpectedly large amount of garbling of domain-specific

information and dismal results. We did not feel it was worthwhile reporting

them. Although SBSAT did solve the CNF versions of these problems, the

other solvers performed better as in previous benchmark sets.

For completeness, we include results on the dlx suite available from Carnegie

Mellon University in Table 6. Some inputs are satisfiable and some are unsat-

isfiable. We applied SBSAT to two variations: namely Trace and CNF formats

(both available). All problems in this suite are easy for all the solvers and that

is about all that can be said about them. We did not include results of dlx9

benchmarks because SBSAT had some memory problems.

Finally, Table 7 shows the result of applying all the solvers to a family of

SBSAT on CNF zCha↑ on CNF Siege Berkmin

Name number total branch number total total total
choices (sec) (sec) choices (sec) (sec) (sec)

queueinv4 83 0.08 0.01 136 0.00 0.01 0.01
queueinv8 438 0.17 0.07 1122 0.04 0.06 0.06
queueinv12 1429 0.98 0.42 4368 0.22 0.31 0.12
queueinv16 2411 1.04 0.75 7721 0.27 0.53 0.24
queueinv20 4787 6.81 2.91 16258 1.63 0.73 0.81
queueinv24 7379 13.62 6.00 26995 2.96 1.89 1.90
queueinv28 10914 25.61 11.23 38145 5.69 3.88 3.40
queueinv32 15403 16.73 14.56 68641 3.20 3.74 4.20
queueinv36 21324 116.6 35.01 103281 23.58 9.59 10.33
queueinv40 27404 189.2 52.54 145691 38.08 17.62 16.46
queueinv44 35820 309.2 88.65 166634 46.42 57.38 25.16
queueinv48 44719 476.2 135.8 217615 79.95 62.0 43.61
queueinv52 52320 683.8 189.9 297830 179.2 155.5 55.93
queueinv56 51768 928.0 238.9 397142 239.1 514.9 82.13

Table 5: SBSAT, zChaff, Siege, Berkmin times on the Queue Invariant bench-
marks
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SBSAT on Trace SBSAT on CNF zCha↑ on CNF Siege Berkmin

Name number total branch number total branch number total total total
choices (sec) (sec) choices (sec) (sec) choices (sec) (sec) (sec)

dlx1 c 525 0.12 0.02 592 0.12 0.03 1082 0.02 0.01 0.01
dlx2 aa 1755 0.22 0.06 2062 0.26 0.08 5224 0.10 0.06 0.02
dlx2 ca 7247 1.49 1.00 6861 1.60 0.91 9800 0.30 0.17 0.12
dlx2 cc 9655 2.60 2.03 9631 2.83 1.97 17825 0.95 0.36 0.26
dlx2 cl 9375 2.14 1.56 8872 2.33 0.57 25390 1.50 0.71 0.29
dlx2 cs 8489 1.84 1.31 7916 2.15 1.37 16310 0.77 0.20 0.23
dlx2 la 6233 1.06 0.64 6814 1.41 0.84 9246 0.26 0.11 0.10
dlx2 sa 2938 0.35 0.16 2168 0.38 0.15 5563 0.14 0.08 0.03

dlx2 cc bug01 6603 1.77 1.20 6448 2.11 1.25 14471 0.84 0.18 0.28
dlx2 cc bug02 6584 1.80 1.22 6432 2.09 1.25 13717 0.79 0.48 0.26
dlx2 cc bug03 6861 1.81 1.23 6628 2.09 1.23 22776 1.05 0.01 0.10
dlx2 cc bug04 6932 1.92 1.33 6699 1.12 1.28 12860 0.52 0.08 0.08
dlx2 cc bug05 3743 1.24 0.65 3413 1.47 0.62 376 0.01 0.22 0.13
dlx2 cc bug06 3630 1.19 0.60 3581 1.52 0.67 374 0.01 0.01 0.10
dlx2 cc bug07 4601 1.36 0.77 3567 1.50 0.65 316 0.01 0.03 0.05
dlx2 cc bug08 5964 1.65 1.06 5353 1.75 0.92 747 0.02 0.01 0.04
dlx2 cc bug09 2549 0.92 0.42 2693 1.18 0.33 321 0.01 0.01 0.02
dlx2 cc bug10 3423 1.15 0.55 3564 1.41 0.56 259 0.00 0.02 0.02
dlx2 cc bug11 6037 1.60 1.03 6886 2.20 1.35 10528 0.43 0.02 0.06
dlx2 cc bug12 7099 2.00 1.43 5702 1.91 1.05 11099 0.44 0.07 0.10
dlx2 cc bug13 5998 1.69 1.12 6133 1.91 1.08 12049 0.50 0.03 0.02
dlx2 cc bug14 253 0.59 0.01 298 0.87 0.01 234 0.01 0.12 0.02
dlx2 cc bug15 4405 1.93 1.27 3756 1.99 0.99 296 0.01 0.01 0.06
dlx2 cc bug16 252 0.58 0.01 297 0.86 0.01 233 0.01 0.13 0.01
dlx2 cc bug17 504 1.16 0.06 4453 2.97 1.01 5806 0.40 0.01 0.01
dlx2 cc bug18 1066 1.06 0.10 3236 2.51 0.78 337 0.01 0.01 0.02
dlx2 cc bug19 269 0.63 0.02 302 0.89 0.02 4452 0.15 0.01 0.00
dlx2 cc bug20 703 0.60 0.03 777 0.89 0.50 521 0.01 0.01 0.02
dlx2 cc bug21 331 0.59 0.02 360 0.85 0.02 458 0.01 0.01 0.01
dlx2 cc bug22 744 0.62 0.40 865 0.91 0.05 4456 0.19 0.01 0.04
dlx2 cc bug23 620 0.60 0.03 323 0.86 0.02 4726 0.14 0.01 0.10
dlx2 cc bug24 270 0.59 0.02 313 0.86 0.02 4034 0.14 0.01 0.04
dlx2 cc bug25 3931 1.32 0.75 3233 1.44 0.59 4406 0.14 0.01 0.02
dlx2 cc bug26 4200 1.42 0.83 3687 1.58 0.48 543 0.02 0.02 0.02
dlx2 cc bug27 591 0.52 0.02 2979 1.16 0.46 293 0.01 0.03 0.00
dlx2 cc bug28 2205 0.88 0.22 5275 2.05 1.09 339 0.01 0.08 0.01
dlx2 cc bug29 324 0.58 0.01 334 0.87 0.02 243 0.01 0.19 0.03
dlx2 cc bug30 311 0.60 0.02 267 0.89 0.02 323 0.01 0.30 0.02
dlx2 cc bug31 294 0.58 0.02 325 0.88 0.02 247 0.00 0.24 0.02
dlx2 cc bug32 278 0.59 0.02 317 0.86 0.02 242 0.00 0.02 0.01
dlx2 cc bug33 299 0.58 0.02 305 0.88 0.02 272 0.01 0.19 0.06
dlx2 cc bug34 329 0.60 0.02 506 0.86 0.03 298 0.01 0.30 0.02
dlx2 cc bug35 282 0.59 0.02 328 0.89 0.02 318 0.01 0.32 0.03
dlx2 cc bug36 279 0.61 0.02 325 0.86 0.02 316 0.01 0.08 0.07
dlx2 cc bug37 3643 1.28 0.71 3214 1.45 0.60 329 0.01 0.05 0.01
dlx2 cc bug38 6249 1.70 0.43 5854 1.93 1.09 9500 0.36 0.44 0.07
dlx2 cc bug39 3307 1.07 0.54 6058 1.88 1.04 12314 0.50 0.04 0.40
dlx2 cc bug40 8046 2.21 1.64 6748 2.26 1.40 9972 0.41 0.12 0.02

Table 6: SBSAT, zChaff, Siege, Berkmin times on the DLX benchmarks. Bench-
marks with bug in the name are satisfiable (verified) and the rest are unsatisfi-
able.
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slider problems, some satisfiable and some unsatisiable, based on the following:

sliderxx sat:

f = (x1 ⊕ (¬xi3 ∧ xi1) ⊕ ¬(xm/2 ∧ xi4)) ≡ ite(xi2 , xi1 ∨ ¬xm/2,¬xi1)

g = ¬x1 ⊕ (xj2 ⊕ (¬xj3 ∧ xj4) ⊕ xj3) ⊕ (xm/2 ≡ xj1)

f :

m i1 i2 i3 i4

60 13 15 17 24

70 12 15 17 24

80 15 17 33 24

90 15 17 24 33

100 15 17 24 43

110 15 17 24 43

120 15 24 43 57

g:

m j1 j2 j3 j4

60 12 16 18 27

70 12 15 19 27

80 12 16 18 27

90 12 16 18 27

100 18 26 27 42

110 20 26 27 42

120 6 18 27 42

sliderxx unsat:

f = (x1 ⊕ (¬xi3 ∧ xi1) ⊕ ¬(xm/2 ∧ xi4)) ≡ ite(xi2 , xi1 ∨ ¬xm/2,¬xi1)

g = (xm/2 ≡ (¬x1 ⊕ (xj2 ⊕ (¬xj3 ∧ xj4) ⊕ xj3) ⊕ (xj5 ≡ xj1)))

f :

m i1 i2 i3 i4

60 13 15 17 24

70 12 15 17 24

80 15 17 33 24

90 15 17 24 33

100 15 17 24 43

110 15 17 24 43

120 15 24 43 57

g:

m j1 j2 j3 j4 j5

60 12 16 18 19 27

70 12 16 18 19 27

80 12 16 18 27 29

90 12 16 18 27 29

100 18 19 26 27 42

110 18 29 26 27 42

120 6 18 27 29 42

If “unsat” is in the name of the benchmark, then it is unsatisfiable, otherwise it

is satisfiable. The number in the name of each benchmark refers to the value of

m. The value of k for all benchmarks is fixed at 6 and the value of l is 6 or 7 (see

the beginning of this section for an explanation of this family of benchmarks and

the meaning of m, k and l). The two functions were chosen to yield somewhat

balanced BDDs, requiring nearly all inputs to have a value before an inference

could be established. These are hard problems and only zChaff was able to

approach the runtimes of SBSAT. Table 8 shows why these problems are hard.

We turned off lemmas in SBSAT and reran all the benchmarks. The number
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SBSAT zCha↑ Siege Berkmin

Name number total branch number total number total number total
choices (sec) (sec) choices (sec) choices (sec) choices (sec)

slider60 sat 1051 0.25 0.10 534 0.02 2900 0.16 2114 0.09
slider70 sat 622 0.27 0.06 1511 0.07 329 0.01 425 0.01
slider80 sat 79884 39.4 39.2 149153 52.8 38044 6.20 209805 73.5
slider90 sat 2765 0.64 0.44 66152 14.3 47180 9.56 41372 8.63
slider100 sat 36761 15.4 15.9 104054 85.5 70693 35.8 120468 48.2
slider110 sat 171163 113.4 113.2 280126 173.3 576670 437.4 1909731 801.4

slider60 unsat 9227 1.49 1.27 27414 3.4 19505 2.63 25251 4.37
slider70 unsat 7957 1.46 1.29 18157 1.93 17735 2.21 17543 2.17
slider80 unsat 148242 78.8 78.6 245112 116.6 215436 104.4 — —
slider90 unsat 429468 263.4 263.0 685026 513.4 501539 302.5 — —
slider100 unsat 1600514 1066 1065 1495633 3094 2482913 6540 — —

Table 7: SBSAT, zChaff, Siege, Berkmin times on the Slider benchmarks

SBSAT with Lemmas SBSAT without Lemmas

Name number total branch number total branch
choices (sec) (sec) choices (sec) (sec)

slider60 sat 1051 0.25 0.10 1152 0.14 0.04
slider70 sat 622 0.27 0.06 1265 0.22 0.05
slider80 sat 79884 39.4 39.2 111575 5.22 5.12
slider90 sat 2765 0.64 0.44 3576 0.30 0.18
slider100 sat 36761 15.4 15.9 51994 2.83 2.69
slider110 sat 171163 113.4 113.2 282213 16.0 15.8
slider120 sat — — — 1539977 86.3 86.1

slider60 unsat 9227 1.49 1.27 10004 0.46 0.37
slider70 unsat 7957 1.46 1.29 9373 0.50 0.39
slider80 unsat 148242 78.8 78.6 190177 8.67 8.57
slider90 unsat 429468 263.4 263.0 626812 29.8 29.7
slider100 unsat 1600514 1066 1065 2403878 124.2 124.1
slider110 unsat — — — 10256075 564.7 564.5

Table 8: SBSAT times and choice points on the Slider benchmarks, with and
without Lemmas.

of choicepoints generated did not change very much. Thus, for these problems,

learning from conflict analysis during search seems to help little. Notice also

that SBSAT running time changes by an order of magnitude. This clearly points

to adjustments that must be made to lemma handling.
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17 Reference - Debugging

17.1 Converting to another format

17.2 Printing internal forms
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18 Reference - Writing Exploitable Input

106



19 Reference - Safe Assignments
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