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This is a summary of activity at the first Workshop on Computational Complexity and
Statistical Mechanics, held September 3-6 in Santa Fe, New Mexico. The workshop was
organized by Gabriel Istrate and Allon Percus of Los Alamos National Laboratory and
Chris Moore of the University of New Mexico and Santa Fe Institute and was attended by
approximately 45 participants including university faculty, students, and researchers from
industrial and government laboratories. Most attending are US residents but a few came
from Europe.

The dominant theme of the workshop was thresholds or phase transitions associated with
statistical properties of random instances of NP-complete problems. Secondary themes con-
sider statistical properties of other random structures and the use of non-rigorous methods to
gain intuition. Work on these topics spans several disciplines including Artificial Intelligence,
Theoretical Computer Science, Physics and Mathematics, and seeks to reveal connections
between physical phenomena and the nature of computation.

Since many computer scientists have not come to fully appreciate the use and meaning
of stochastic processes and statistics in algorithmic complexity research we first provide a
simple background related to thresholds. Although a true model for a typical physical system

can involve so many components or sites as to become intractable, it is sometimes the case



that an accurate mathematical representation can be obtained from an approximation of
its average behavior as if it were an infinite system. Consider, for example, the percolation
of a fluid in a large network of sites and pipes. Given an initial concentration of fluid at
a particular site, the question is to determine the percentage of sites eventually receiving
fluid. For infinitely large networks, regardless of detailed geometry, if the average number
of neighbors for a site is below a critical value, then the probability that a site which is
an arbitrarily large distance from the source receives fluid tends to 0, but if the average
number of neighbors is greater than a critical value the probability of receiving fluid tends
to 1. This transition behavior is characterized by rapidly increasing lengths of correlation
paths between parts of the system as the transition is approached (that is, the behavior of
correlation paths is not analytic for infinite systems at the transition point). Researchers
are finding that this behavior is analogous to that of search algorithms for computer science
problems such as the Satisfiability problem.

The Satisfiability problem (SAT) is the question of determining whether there exists an
assignment of Boolean values to variables of a propositional expression in Conjunctive Normal
Form (conjunction of disjunctions of variables or negations of variables, also called clauses)
which causes the expression to evaluate to true. The problem is NP-complete. It is referred
to as k-SAT if all clauses have k atomic elements. Random instances of k-SAT contain m
clauses constructed uniformly and independently from n variables. It has been observed that
search algorithms applied to random instances of k-SAT typically have poor performance
around a critical threshold identified by m/n = ¢(k), where ¢(k) is not yet known precisely
but is in the intersection of (2% /k) and O(2¥). They are more efficient, usually, if mn/n is far
away from the critical threshold. The reason seems to be that with relatively few constraints
(clauses) there are many opportunities to find a satisfying assignment because so many exist
and with relatively many constraints there are many opportunities to combine constraints
for a refutation. At the threshold (or transition) there are few satisfying assignments and,
due to sparseness properties of random formulas, it is unlikely that the existing constraints
can be combined in an efficient way to prove no satisfying assignment exists. In other words,
correlation paths between clauses are very long resulting in long “backbones” of inferred
values to variables which accompany solutions!.

Curiously, the backbones of k-SAT near the threshold seem analogous to the well-studied
backbones of molecular states that are observed during phase transitions in physics. As, say
temperature, is reduced, a backbone of molecular magnetic “spins” develops during a phase
transition. More than one particular backbone may develop, but once one forms, the energy
needed to “backtrack” to another rises prohibitively. This is analogous to computational

work needed to search for another assignment inferring a similar number of values and

!This is probably due to the fact that the smallest unsatisfiable subformulas are getting big near the
threshold.



satisfying the same number of clauses (that is, energy state). If the analogy can be made
concrete in some understandable way, we may be able to improve our understanding of the
nature of “hard” problems and what it takes to make them easier. Thus, a number of people
are studying k-SAT transitions, some with assistance from phase transition results. Among
other things, they are looking at the shapes of the transition curves hoping to determine the
relationship between sharp or first-order transitions with hard problems and the relationship
of coarse or second-order transitions with easy problems. Some are looking for definitive
ways that transition behavior implies algorithmic behavior of any kind.

SAT and a generalization known as Constraint Satisfaction Problems are important
classes studied in this area and several talks at the workshop addressed these. Talks by
Achlioptas and Kirousis presented past results on bounding the transition of 3-SAT from
above and below and highlighted techniques for obtaining those bounds, including their lim-
itations. Lower bounds have relied on analyzing Markovian migration of clauses through
widths 3, 2 and 1 but such results have topped out at critical m/n = 3.26 which is far
below the empirically obtained threshold of m/n = 4.25. Upper bounds have relied on
first moment analyses of subsets of satisfying assignments with reduced variance. Kautz
is interested in generators of satisfiable formulas with distributions ranging from ones that
are everywhere tractable to ones that have a sharp hardness threshold. These are consid-
ered important for testing “one-sided” or incomplete solvers. Daudé presented transition
bounds for k-XORSAT, instances of which can be solved in polynomial time by gaussian
elimination. The aim is to help gather evidence for comparing transitions on “easy” classes
with transitions on “hard” classes. Demopoulis presented experimental data with the aim
of identifying easy-hard transitions for specific SAT solvers. Such results might contribute
to improving SAT solvers of the future. Molloy discussed models for random constraint
satisfaction problems. He is able to characterize those in which satisfiability transitions are
sharp with respect to number of constraints.

Phase transitions on problems other than SAT have been studied and some results were
reported at the workshop. Chayes considered the Number Partitioning Problem, which is
closely related to the Subset Sum and other NP-complete Problems. It was shown that ran-
dom instances of this problem, taken from a suitable distribution, exhibit a first-order phase
transition. This is interesting in light of the fact that some polynomial time solvable prob-
lems such as 2-SAT exhibit a second-order phase transition. A similar result was reported by
Mertens using statistical methods developed for the problem of identifying the minimum in a
list of random numbers. However, Mertens also offered a calculation of the probability distri-
butions of optimal and sub-optimal costs. Culberson experimentally considered the nature
of “frozen” edges for Graph Coloring. Frozen edges in Graph Coloring are the counterpart
of backbones in SAT. If random graphs are constructed by adding edges one at a time, the
rate at which edges become frozen shows a rapid jump, indicating a sharp phase transition



of the kind typically observed for NP-complete problems. Boettcher presented a heuristic
for finding good solutions to hard physical and combinatorial optimization problems which
is designed to be particularly successful near phase transitions. Duxbury considered phase
transitions by constraint counting and presented results for a physical and combinatorial
problem, namely Rigidity Percolation and Minimum Vertex Cover. Borgs considered phase
transitions for random H-colorings of rectangular subsets of the hypercubic lattice.

Gibbs sampling has been applied successfully in some cases to combinatorial optimization
problems and several speakers reported results with this technique. Braun investigated the
behavior of typical solutions to optimization problems, whose parameters are set randomly,
with respect to the empirical Gibbs measure of one training instance on a second test in-
stance. His focus was the case where “typical” solutions for different sampled instances start
to look very different below a certain temperature and their performance on the test instance
decreases. He conjectured a connection exists between the robustness of a solution sampled
from the Gibbs distribution at finite temperature and the hardness of approximating the
solution to the same relative error as the “typical” instance. Sinclair presented a Markov
chain Monte Carlo algorithm that samples perfect matchings in an arbitrary bipartite graph
from the Gibbs distribution with arbitrary non-negative weights on the edges. He obtained
a polynomial time algorithm that computes the partition function to any desired accuracy.

The following are highlights of the remaining presentations. Aldous considered bipartite
matching problems with edge weights taken independently from an exponential distribution.
The mean of the optimal solution had been conjectured to be ((2) = 7?/6. Aldous verified
this rigorously by cleverly identifying the limit in terms of a matching problem on a limit
infinite tree. Selman discussed the “heavy-tailed” phenomena in combinatorial search. If
distribution tails decay “slowly,” search mechanisms may get “stuck” in fruitless portions of
the search space. Restarting frequently can mitigate this problem. Hogg and van Dam dis-
cussed algorithms for quantum computing. Hogg explained how certain regularities related
to phase transitions apply to quantum search algorithms and van Dam claimed results which
indicate quantum adiabatic computing will probably not be useful for solving NP-complete
problems in polynomial time. Moore showed that almost all graphs with degree 4.03 or
less, including 4-regular graphs, are 3-colorable. Yukich found a law of large numbers and
a central limit theorem for the problem of sequentially packing unit balls in a large cube
(the existence of such had been predicted using non-rigorous techniques). Parkes presented
some insights on interactions of phase transitions, constraint relaxation, and distributed
and parallel search methods. Marathe described research aimed at proposing a “predictive
complexity theory” which simultaneously characterizes complexity and approximability of
combinatorial problems when instances are succinctly specified in a certain way. Reidys dis-
cussed combinatorial landscapes. Impagliazzo analyzed hill-climbing algorithms for planted
bisection problems and compared the results to Metropolis algorithms.



Where do we go from here? An illusive goal has been to show that statistical properties
imply some meaningful algorithmic complexity properties. Hoping for P # NP may be
asking too much. Some wonder whether we will be able to establish direct connections
between statistical properties and complexity bounds of some specific problems. However,
links between statistical properties and bounds for certain classes of algorithms have already
been established, for example the link between sparseness and resolution in the case of
unsatisfaible 3-SAT formulas. Statistical methods, such as Gibbs sampling, may lead to
useful alternative algorithms for particular optimization problems such as those studied by
Braun. Non-rigorous methods can reveal amazing insights. But how reliable are these
insights? At the moment, we are gathering evidence by attempting considerably many
comparisons between rigorous and non-rigorous results on the same problem. It will probably
be some time before we know for sure.



