Experiences in the Research and Development of a Non-clausal SAT Solver

John Franco, Sean Weaver

ECECS, University of Cincinnati

United States Department of Defense

Abridged Sample Input (from CMU webpage)

```
MODULE module-name-changed
INPUT
  ID_EX_RegWrite, ID_EX_MemToReg, _Taken_Branch_1_1, EX_MEM_Jump, ...
OUTPUT _temp_1252;
STRUCTURE
  _squash_1_1 = or(_Taken_Branch_1_1, EX_MEM_Jump);
  _squash_bar_1_1 = not(_squash_1_1);
  _EX_Jump_1_1 = and(_squash_bar_1_1, ID_EX_Jump);
  _Taken_Branch_9_1 = and(_squash_bar_1_1, ID_EX_Branch, TakeBranchALU_0);
  _Reg2Used_1_1 = or(IF_ID_UseData2, IF_ID_Branch, IF_ID_MemWrite, IF_ID_MemToReg);
  _temp_967 = and(_Reg2Used_1_1, e_2_1);
  _temp_976 = ite(_temp_969, IF_ID_Jump, Jump_0);
  _temp_1249 = and(_temp_1038, _temp_1066, _temp_1072, _temp_1189, _temp_1246);
  true_value = new_int_leaf(1);
  are_equal(_temp_1252, true_value); % 1
ENDMODULE
```

Courtesy M.N. Velev, Superscalar Suite 1.0. Available from: http://www.ece.cmu.edu/~ mvelev.

Translation to CNF

Expression: $v_3 = ite(v_0, v_1, v_2);$

Karnaugh Map:

	00	01	11	10
00	1	0	1	0
01	1	0	1	0
11	0	1	1	0
10	1	0	0	1

<u>CNF:</u>

$$(v_0 \lor v_2 \lor \overline{v}_3)$$

$$(v_0 \vee \bar{v}_2 \vee v_3)$$

$$(\bar{v}_0 \vee \bar{v}_1 \vee v_3)$$

$$(\bar{v}_0 \vee v_1 \vee \bar{v}_3)$$

Translation to CNF

Expression: $v_3 = ite(v_0, v_1, v_2)$; What Heuristics Like:

Karnaugh Map:

	00	01	11	10
00	1	0	1	0
01	1	0	1	0
11	0	1	1	0
10	1	0	0	1

CNF:

$$(v_0 \lor v_2 \lor \bar{v}_3)$$

$$(v_0 \lor \bar{v}_2 \lor v_3)$$

$$(\bar{v}_0 \lor \bar{v}_1 \lor v_3)$$

$$(\bar{v}_0 \lor v_1 \lor \bar{v}_3)$$

$$\begin{array}{lll} (v_0 \wedge v_1) \rightarrow v_3 & (v_0 \wedge v_3) \rightarrow v_1 \\ (\bar{v}_0 \wedge v_2) \rightarrow v_3 & (\bar{v}_0 \wedge v_3) \rightarrow v_2 \\ (v_0 \wedge \bar{v}_1) \rightarrow \bar{v}_3 & (v_0 \wedge \bar{v}_3) \rightarrow \bar{v}_1 \\ (\bar{v}_0 \wedge \bar{v}_2) \rightarrow \bar{v}_3 & (\bar{v}_0 \wedge \bar{v}_3) \rightarrow \bar{v}_2 \\ (v_1 \wedge v_2) \rightarrow v_3 & (\bar{v}_1 \wedge \bar{v}_2) \rightarrow \bar{v}_3 \\ (v_1 \wedge \bar{v}_3) \rightarrow \bar{v}_0, \bar{v}_2 & (v_2 \wedge \bar{v}_3) \rightarrow v_0, \bar{v}_1 \\ (\bar{v}_1 \wedge v_3) \rightarrow \bar{v}_0, v_2 & (\bar{v}_2 \wedge v_3) \rightarrow v_0, v_1 \\ (v_1 \wedge \bar{v}_2) \rightarrow v_0 = v_3 \\ (\bar{v}_1 \wedge v_2) \rightarrow \bar{v}_0 = v_3 \\ (\bar{v}_1 \wedge v_2) \rightarrow \bar{v}_0 = v_3 \end{array}$$

State Machine Used to Represent Functions

States of a SMURF representing $v_3 = ite(v_0, v_1, v_2)$

Smurfs Don't Have to be Big

Locally Skewed, Globally Balanced Heuristics

Weight of terminal state is 0

If state s has p successors $\{s_1, s_2, ..., s_p\}$, weight of s is

$$\frac{\sum_{i=1}^{p} weightOf(s_i) + numberInferencesMadeEnrouteTo(s_i)}{K*p}$$

Every state transition gets a weight:

inferences to destination state plus weight of that state

Every literal gets a score:

Sum of transition weights for that literal across Smurfs

Every variable v gets a score:

$$(score(v) + \epsilon) * (score(\bar{v}) + \epsilon)$$

Branch on highest scoring variable

Locally Skewed, Globally Balanced Heuristics

 $\langle (10 + (8/3)(1/K) + 1/(3K^2))/(8K) \rangle$ $ite(v_1, v_2 \land (v_3 \oplus v_4), v_4 \land (v_2 \oplus v_3))$ (8+1/K)/6K(8+1/K)/6K $\langle (8+1/K)/6K \rangle$ $(ite(v_1,v_3\oplus v_4,v_4\wedge ar{v}_3)$ $\langle (8+1/K)/6K \rangle$ 2/K $(ite(v_1,v_2 \wedge ar{v}_3,v_2 \oplus v_3))$ $\langle 2/K\rangle$ $(ite(v_1,v_2 \wedge ar{v}_4,ar{v}_2 \wedge v_4))$ 1/K1 + 1/K1/K 3×2 3×2 6×2 2×3 2×1 2×1 1×2 1 + 1/K $\langle 0 \rangle$ $\overline{v_2 \oplus v_3}$ $v_3 \oplus v_4$ 1 $\langle 1/K \rangle$ $\langle 1/K \rangle$

 4×1

 4×1

Require Pre-processing

Intuitively, we desire:

- Fewer State Machines
- Smaller State Machines
- Redundancies Removed Across State Machines
- Inferences Revealed and Assigned as Early as Possible
- Safe Assignments Revealed and Assigned Early

Search Space Profile for Hard Problems

Hard Problems That Fit This Profile

For example, Bounded Model Checking problems

Tools for Pre-processing

- Restriction (eliminate redundancies, find inferences)
- Strengthening (find inferences missed by restriction)
- Generalized co-factor (eliminate functions)
- Cluster some functions (conjoin them)
- Existential Quantification (eliminate variables)
- Assign uninferred but safe values (reductions)
- Add uninferred and unsafe constraints (tunnel)

Restrict

Restrict

Spreading an inference from one function to another.

If $v_2 = 0$ in f then $v_3 = v_4 = 0$ is inferred.

Replacing f with f', gives inference $v_4 = 0$ from c (if $v_2 = 0$) and then inference $v_3 = 0$ from f'.

Strengthening

Existentially quantify away v_1 from f, then ...

Strengthening

Existentially quantify away v_1 from f, then ...

conjoin f and c to reveal inference $v_3 = 0$.

Clustering and Existential Quantification

$$\exists v (f_1 \land \ldots \land f_m) \equiv (f_1 \land \ldots \land f_m)|_{v=0} \lor (f_1 \land \ldots \land f_m)|_{v=1}$$

Clustering and Existential Quantification

$$\exists v (f_1 \land \ldots \land f_m) \equiv (f_1 \land \ldots \land f_m)|_{v=0} \lor (f_1 \land \ldots \land f_m)|_{v=1}$$

But this is what we really want:

$$\exists v (f_1 \land \ldots \land f_m) \equiv (f_1|_{v=0} \lor f_1|_{v=1}) \land \ldots \land (f_m|_{v=0} \lor f_m|_{v=1})$$

Replace f with $(f|_{v=0} \vee f|_{v=1})$

Replace f with $(f|_{v=0} \vee f|_{v=1})$

Choose v_7 to separate v_1, v_2, v_3 from v_4, v_5, v_6

Splitting An Expression Is Desirable

$$\underbrace{f_1 \wedge f_2 \wedge \ldots \wedge f_i \wedge f_{i+1} \wedge \ldots \wedge f_{m-1} \wedge f_m}_{}$$

If no variables and no variables in f_1 to f_i in f_{i+1} to f_m are in f_{i+1} to f_m

then $\phi_1 = f_1 \wedge \ldots \wedge f_i$ and $\phi_2 = f_{i+1} \wedge \ldots \wedge f_m$ can be solved independently

Autark Assignments Come Close

$$f_1 \wedge f_2 \wedge \ldots \wedge f_i \wedge f_{i+1} \wedge \ldots \wedge f_{m-1} \wedge f_m$$

If there is a subset V' of variables in f_1 to f_i and an assignment $t_{V'}$ of values to V' that satisfies f_1 to f_i

and none of the variables of V' is in f_{i+1} to f_m

then satisfy $\phi_1 = f_1 \wedge \ldots \wedge f_i$ with partial assignment $t_{V'}$ and solve $\phi_2 = f_{i+1} \wedge \ldots \wedge f_m$ independently

Safe Assignments

If
$$(f_1 \wedge \ldots \wedge f_m)|_{v=0} \equiv (f_1 \wedge \ldots \wedge f_m)|_{v=0} \vee (f_1 \wedge \ldots \wedge f_m)|_{v=1}$$

then $v = 0$ is safe

If
$$(f_1 \wedge \ldots \wedge f_m)|_{v=1} \equiv (f_1 \wedge \ldots \wedge f_m)|_{v=0} \vee (f_1 \wedge \ldots \wedge f_m)|_{v=1}$$

then $v=1$ is safe

Example: v = 1 is a safe assignment but is not autark:

$$f = (v \lor a) \land (v \lor \bar{a} \lor b) \land (\bar{v} \lor \bar{a} \lor b \lor c) \land (\bar{b} \lor \bar{c}) \dots$$

Because

$$f|_{v=0} = (a) \land (\bar{a} \lor b) \land (\bar{b} \lor \bar{c}) \to$$
$$f|_{v=1} = (\bar{a} \lor b \lor c) \land (\bar{b} \lor \bar{c})$$

Safe Assignments: Checking isn't too bad

But conjoining functions to find safe assignments can be expensive Luckily, the computational effort can be distributed:

If $(\overline{f_i|_v} \wedge f_i|_{\bar{v}}) \equiv 0$ for every i such that v is in f_i then v = 1 is safe

If $(f_i|_v \wedge \overline{f_i|_{\bar{v}}}) \equiv 0$ for every i such that v is in f_i then v = 0 is safe

But the check may fail on some safe assignments

The idea extends to groups of variables

Consider two functions f_1 and f_2

Finding safe assignment for v_4 in f_1 alone:

Finding safe assignment for v_4 in f_1 alone: $v_4 = 0$ only

Finding safe assignment for v_4 in f_2 alone:

Finding safe assignment for v_4 in f_2 alone: neither one

Safe Assignments: Some Are Missed

Conjoin the two functions

Safe Assignments: Some Are Missed

Conjoin the two functions then find $v_4 = 0$ is safe

Safe Assignments: Some Are Missed

Conjoin the two functions then find $v_4 = 0$ is safe, also $v_2 = 0$ is safe

Safe Assignments: But Multiple Assignments Can Pay Off

Safe assignments $v_1 = v_2 = 1$ and $v_1 = 1, v_3 = 0$ are found as pairs only

Search Space Profile for Hard Problems

Unsafe Assignments

- Guess some (uninferred) constraints based on *solution* structure in the same family
- Add those constraints initially to reduce the "hump"
- Run the search breadth-first
- When search breadth begins to decline, remove the constraints
- Solve to completion
- Possibly no solution found for a satisfiable input

Example: Van der Waerden Numbers

An ordering of the input variables is natural

Example: Van der Waerden Numbers

1010001110100100011101101000111010

2 categories, progression length 4 $(W_{max}(2,4) \text{ formula})$

Example: Van der Waerden Numbers

1010001110100100011101101000111010

2 categories, progression length 4 $(W_{max}(2,4) \text{ formula})$

2 categories, progression length 5 $(W_{max}(2,5))$ formula)

Analysis of Solutions Suggests...

Conjecture:

For every $W_{max}(2, l)$ formula there exists a solution that contains at least one reflected pattern of length W(2, l)/(2 * (l - 1)) with the middle positioned somewhere between W(2, l)/(l - 1) and W(2, l) * (l - 2)/(l - 1).

Analysis of Solutions Suggests...

Conjecture:

For every $W_{max}(2, l)$ formula there exists a solution that contains at least one reflected pattern of length W(2, l)/(2 * (l - 1)) with the middle positioned somewhere between W(2, l)/(l - 1) and W(2, l) * (l - 2)/(l - 1).

From search profile:

The maximum breadth occurs near depth W(2, l)/(2(l-1)).

 $W(2, l) \approx l * W(2, l - 1)$, for small l anyway.

Continuing...

Add the unsafe constraints:

Function Seg	Range	Meaning
$(v_{-i} \vee v_{i+1}) \wedge (\bar{v}_{-i} \vee \bar{v}_{i+1})$	$0 \le i < s/2$	force $v_{-i} \equiv \bar{v}_{i+1}$.

Continuing...

Add the unsafe constraints:

Function Seg	Range	Meaning
$(v_{-i} \vee v_{i+1}) \wedge (\bar{v}_{-i} \vee \bar{v}_{i+1})$	$0 \le i < s/2$	force $v_{-i} \equiv \bar{v}_{i+1}$.

Retract the constraints at depth

$$(l*W(2,l-1))/(2(l-1))$$

Continuing...

Add the unsafe constraints:

Function Seg	Range	Meaning
$\overline{(v_{-i} \vee v_{i+1}) \wedge (\bar{v}_{-i} \vee \bar{v}_{i+1})}$	$0 \le i < s/2$	force $v_{-i} \equiv \bar{v}_{i+1}$.

Retract the constraints at depth

$$(l*W(2,l-1))/(2(l-1))$$

Continue without unsafe constraints until the end

Summary

State Machines

- Support function-complete look-ahead
- Efficiently support complex heuristics
- Efficiently admit special forms, e.g. cardinality constraints
- Efficiently admit backjumping, lemmas, restarts, etc.

Preprocessing

• Restrict, Existential Quantification, Strengthening help

Safe Assignments

UnSafe Assignments