Experiences
in the

Research and Development

of a

Non-clausal SAT Solver

John Franco, Sean Weaver

ECECS, Unwersity of Cincinnati
United States Department of Defense

Abridged Sample Input (from CMU webpage)

MODULE module-name-changed
INPUT
ID_EX_RegWrite, ID_EX_MemToReg, _Taken_Branch_1_1, EX_MEM_Jump,
OUTPUT _temp_1252;
STRUCTURE
_squash_1_1 = or(_Taken_Branch_1_1, EX_MEM_Jump);
_squash_bar_1_1 = not(_squash_1_1);
_EX_Jump_1_1 = and(_squash_bar_1_1, ID_EX_Jump);
_Taken_Branch_9_1 = and(_squash_bar_1_1, ID_EX Branch, TakeBranchALU_0);
_Reg2Used_1_1 = or(IF_ID_UseData2, IF_ID_Branch, IF_ID_MemWrite, IF_ID_MemToReg);
_temp_967 = and(_Reg2Used_1_1, e_2_1);

_temp_976 = ite(_temp_969, IF_ID_Jump, Jump_O);

and(_temp_1038, _temp_1066, _temp_1072, _temp_1189, _temp_1246);

_temp_1249

true_value = new_int_leaf(1);
are_equal (_temp_1252, true_value); % 1
ENDMODULE

Courtesy M.N. Velev, Superscalar Suite 1.0. Available from: http://www.ece.cmu.edu/~ mvelev.

Translation to CNF

Expression: v3 = 1te(vg, V1, Vs);

Karnaugh Map:
0001|1110

00 1
0l 1
110
10 1

Ol | O O
— OO O

o= ==

CNF:

(Uo V U9 V ?73)
(Uo V U9 V Ug)
(?70 V1V ?)3)
(D9 V v1 V U3)

Translation to CNF

Expression: U3 = ite(vo, V1, Ug); What Heuristics Like:

UO\/UQ\/@S

()
(Uo V ?_JQ V Ug)
()
()

Karnaugh Map: (UO A Ul) — U3 (UO A US) — U1
00[01]11]10 (g Awa) — v (Vg A vg) = v
wl1lol1lo (Uo N ?_Jl) — U3 (UO N ?73) — V1
oll1Tol11o0 (?70 A ?72> — V3 (?70 A 173) — V9
1o 1]1]0 (vi Avz) = w3 (U1 AD2) — 03
0170701 (Ul N ?_Jg) — Vg, U2 (UQ A ?73) — Vg, U1
CNF: (?_Jl N Ug) — Vg, U2 (?72 A Ug) — U, VU1
(01 A\ 02)
(01 A wg)

Vo V U1V U3
?70\/’01\/1_}3

State Machine Used to Represent Functions

2
0 .0

1 1.7 -3 3 2 2
lole)) o) e U7, 8], e)o e

2-0 2~ 2-1 01

3 1 3 3

[~0/2 ~3 ~3 [0/1]
0~2 ~0~1

[~3 W1 [~0/~2] o[1]: [~3]
2[0/~1] ~0[2]

~0[~2] -2]0/1]

0[~1] -~11~0/21

States of a SMURF representing vs = ite(vg, v1, vs)

1[2]

SMURFs Don’t Have to be Big

[ite(vl, vy A (V3 @ vy), 4 A (V2 B v3))

"1 [4]

2

4

A
[ite(vi, v3 D vy, v4 A V3))

(2te(vy, va A U3, v2 @ v3) |

1 ~1["3/4] ~1
3[1/~4]
~3 [4]
4 [~3]
~4 [1/3]
Yy v
[73 %, m (%) & V3
3["4] | ~3 [4] 21[73] | 23]
4[~3] | "4 (3] 3[72] | "3 (2]

11[2,73]
23]

"2 ["1/3]
3["1/72]
"3 [2]

Lite(vi, va A Uy, Ua A vy) |

1[2/74]
2 [1/74]
4[°1/~2]

“1[72/4]
"2["1/4]
"4 [1/2]

~2 [~1/3/4]
~3 [2/4]
"4 [1/2/3]

Locally Skewed, Globally Balanced Heuristics
Weight of terminal state is 0

If state s has p successors {s1, S, ..., sp }, weight of s is

> weightOf(s;)+numberIn ferencesMade EnrouteTo(s;)
Kxp

Every state transition gets a weight:
inferences to destination state plus weight of that state

Every literal gets a score:
Sum of transition weights for that literal across SMURFs

Every variable v gets a score:
(score(v) + €) * (score(v) + ¢)

Branch on highest scoring variable

Locally Skewed, Globally Balanced Heuristics
((10+ (8/3)(1/K) +1/(3K?))/(8K))

lite(vr, va A (U3 B v4), 04 A (V2 B v3))

(8 + I/K)/GK‘ (8+1/K)/6K) | (B+1/K)/6K

(2te(vi, v3 D vy, v4 A V3)) (4 1/K)/6K)

(2te(vy, va A U3, v2 @ v3) |

2/K

(ite(vr, va A Uy, U2 A vy))

1+1/K 1/K| 3x2 1/K 3 x2 6 x 2 2x3
2x1 2x1 1x2

4x1

Require Pre-processing

Intuitively, we desire:

e Fewer State Machines

e Smaller State Machines

e Redundancies Removed Across State Machines

e Inferences Revealed and Assigned as Early as Possible

e Safe Assignments Revealed and Assigned Early

Search Breadth

Search Space Profile for Hard Problems

1le+06 r T T T T T

100000 :
10000 :
1000 :
100 |

10 |

1 I I I I I I I I
0 20 40 60 80 100 120 140 160 180

Search Depth

Hard Problems That Fit This Profile

A

For example, Bounded Model Checking problems

Tools for Pre-processing

e Restriction (eliminate redundancies, find inferences)
e Strengthening (find inferences missed by restriction)
e Generalized co-factor (eliminate functions)

e Cluster some functions (conjoin them)

e Existential Quantification (eliminate variables)

e Assign uninferred but safe values (reductions)

e Add uninferred and unsafe constraints (tunnel)

Restrict

Restrict

Spreading an inference from one function to another.
If v9=0in f then v3 = vs = 0 is inferred.

Replacing f with f’, gives inference vy = 0 from ¢ (if v = 0)
and then inference v3 = 0 from f’.

Strengthening

1 0

Existentially quantify away v; from f, then ...

Strengthening

1 0

1 0

conjoin f and c to reveal inference v = 0.

Clustering and Existential Quantification

(AN AL =N A fa)o=o V(LA oA fin)]o=1

Clustering and Existential Quantification

F(fiAN A f) =LA A f)l=o V(iAo A fi)|o=1

But this is what we really want:

3U(fl ARRRWA fm) = (f1|v:0 \% f1|v=1) ARERRA (fm|v:O \% fm|v=1)

Existential Quantification

Replace f with (f|y=0 V flo=1)

Existential Quantification

Replace f with (f|,=0 V flv=1)

Existential Quantification

Choose v7 to separate vy, v9, v3 from vy, vs, vg

Existential Quantification

Splitting An Expression Is Desirable

JINJo N NFiNfiga Ao N fmt A
-~

[f no variables and no variables
in fi to f; m fip1 to fi,
are in f; 11 to f, are in fy to f;

thenqblzfl/\.../\fi andgbngiﬂ/\.../\fm
can be solved independently

Autark Assignments Come Close

JINJa N NFiNfia Ao AN fmt A
-~

If there is a subset V’ and none of the
of variables in f; to f; variables of V' is
and an assignment, ¢y in fir1 to fin

of values to V' that
satisfies fi to f;

then satisty ¢1 = f1 A ... A f; with partial assignment
tyr and solve ¢o = f;i1 A ... A f,, independently

Safe Assignments

(AN A fo)o=0= (FiA A fo)lo=o V(Fi A oA i) o=t
then v = 0 1s safe

(AN A fdl=t = (AN A fa)lo=o V(LA A fin) o=t

then v = 1 is safe

Example: v = 1 is a safe assignment but is not autark:

f=@Va)A(vvaVvb)A(oVaVvbVe)A(bVe)...
Because
flo=o= (@) A(@Vb) A (bVe)—
floei =(@VbVe)A(bVE)

Safe Assignments: Checking isn’t too bad

But conjoining functions to find safe assignments can be expensive
Luckily, the computational effort can be distributed:
If (filo A fils) = 0 for every i such that v is in f; then v = 1 is safe
If <f2|v A m> = 0 for every ¢ such that v is in f; then v = 0 is safe
But the check may fail on some safe assignments

The idea extends to groups of variables

Safe Assignments: Example, Single Variable

1

Consider two functions f; and fs

Safe Assignments: Example, Single Variable

Finding safe assignment for v4 in f; alone:

Safe Assignments: Example, Single Variable

Finding safe assignment for v4 in f; alone: vy = 0 only

Safe Assignments: Example, Single Variable

Finding safe assignment for vy in f5 alone:

Safe Assignments: Example, Single Variable

Finding safe assignment for vy in f5 alone: neither one

Safe Assignments: Some Are Missed

Conjoin the two functions

Safe Assignments: Some Are Missed

Conjoin the two functions then find vy = 0 is safe

Safe Assignments: Some Are Missed

Conjoin the two functions then find v4 = 0 is safe, also v9 = 0 is safe

Safe Assignments: But Multiple Assignments Can Pay Off

0 1
0 0

Safe assignments v; = vo = 1 and v; = 1, v3 = 0 are found as pairs only

Search Breadth

Search Space Profile for Hard Problems

1le+06 r T T T T T

100000 :
10000 :
1000 :
100 |

10 |

1 I I I I I I I I
0 20 40 60 80 100 120 140 160 180

Search Depth

Unsafe Assignments

e Guess some (uninferred) constraints based on solution
structure in the same family

e Add those constraints initially to reduce the “hump”

e Run the search breadth-first

e When search breadth begins to decline, remove the con-
straints

e Solve to completion

e Possibly no solution found for a satisfiable input

Example: Van der Waerden Numbers
/‘o
Z:
Z & s %’.’(j{"«a) &
A
2
§

P

An ordering of the input variables is natural

Example: Van der Waerden Numbers

11 11 11 11
00 1001 1100 100
01 00 10 01
0 001 0

1010001110100100011101101000111010

2 categories, progression length 4 (W,,q,(2,4) formula)

Example: Van der Waerden Numbers

11 11 11 11
00 1001 1100 100
01 00 10 01
0 001 0

1010001110100100011101101000111010

2 categories, progression length 4 (W,,4,(2,4) formula)

10 011 00 11 01 100 1 0 0
1 00 0 11 10 0011 01

11 01 100 1 00 0

10 0011 01
1 0o 0
111011110110100010111010010000100101110100011110111101111000101110000100001001011101000111101111011110001011101001000010000111010001111011110111100010111010010000100101110100010

2 categories, progression length 5 (W,,,..(2,5) formula)

Analysis of Solutions Suggests...

Conjecture:

For every Wi,..(2,1) formula there exists a solu-
tion that contains at least one reflected pattern of
length W(2,1)/(2 x (I — 1)) with the middle po-
sitioned somewhere between W(2,1)/(l — 1) and
W2,0)x(l—2)/(l—1).

Analysis of Solutions Suggests...

Conjecture:

For every Wi,..(2,1) formula there exists a solu-
tion that contains at least one reflected pattern of
length W(2,1)/(2 x (I — 1)) with the middle po-
sitioned somewhere between W(2,1)/(l — 1) and
W2,0)x(l—2)/(l—1).

From search profile:

The maximum breadth occurs near depth

W(2,0)/(2(1 = 1)).
W(2,0) = 1+W(2,l—1), for small [anyway.

Continuing...

Add the unsafe constraints:

Function Seg Range Meaning

(?}_Z' V ?)Z'+1) A (77—1' V @i_}_l) 0<1< 8/2 force v_; = ;1.

Continuing...

Add the unsafe constraints:

Function Seg Range Meaning

(?}_Z' V ?)Z'+1) A (77—1' V @i_}_l) 0<1< 8/2 force v_; = ;1.

Retract the constraints at depth
(L W(2,1-1))/20(—1))

Continuing...

Add the unsafe constraints:

Function Seg Range Meaning

(?}_Z' V ?)Z'+1) A (77—1' V @i_}_l) 0<1< 8/2 force v_; = ;1.

Retract the constraints at depth
(L W(2,1-1))/20(—1))

Continue without unsafe constraints until the end

Summary
State Machines
e Support function-complete look-ahead
e Efficiently support complex heuristics
e Efficiently admit special forms, e.g. cardinality constraints

e Efficiently admit backjumping, lemmas, restarts, etc.
Preprocessing
e Restrict, Existential Quantification, Strengthening help

Safe Assignments

UnSafe Assignments

