Experiences
in the
Research and Development
of a
Non-clausal SAT Solver

John Franco, Sean Weaver
ECECS, University of Cincinnati
United States Department of Defense
MODULE module-name-changed
INPUT
 ID_EX_RegWrite, ID_EX_MemToReg, _Taken_Branch_1_1, EX_MEM_Jump, ...
OUTPUT _temp_1252;
STRUCTURE
 _squash_1_1 = or(_Taken_Branch_1_1, EX_MEM_Jump);
 _squash_bar_1_1 = not(_squash_1_1);
 _EX_Jump_1_1 = and(_squash_bar_1_1, ID_EX_Jump);
 _Taken_Branch_9_1 = and(_squash_bar_1_1, ID_EX_Branch, TakeBranchALU_0);
 _Reg2Used_1_1 = or(IF_ID_UseData2, IF_ID_Branch, IF_ID_MemWrite, IF_ID_MemToReg);
 _temp_967 = and(_Reg2Used_1_1, e_2_1);
 ...
 _temp_969 = ite(_temp_969, IF_ID_Jump, Jump_0);
 ...
 _temp_1249 = and(_temp_1038, _temp_1066, _temp_1072, _temp_1189, _temp_1246);
 ...
 true_value = new_int_leaf(1);
 are_equal(_temp_1252, true_value); % 1
ENDMODULE

Translation to CNF

Expression: \(v_3 = \text{ite}(v_0, v_1, v_2); \)

Karnaugh Map:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

CNF:

\[
(v_0 \lor v_2 \lor \bar{v}_3) \\
(v_0 \lor \bar{v}_2 \lor v_3) \\
(\bar{v}_0 \lor \bar{v}_1 \lor v_3) \\
(\bar{v}_0 \lor v_1 \lor \bar{v}_3)
\]
Translation to CNF

Expression: \(v_3 = \text{ite}(v_0, v_1, v_2) \);

What Heuristics Like:

Karnaugh Map:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

CNF:

\((v_0 \lor v_2 \lor \bar{v}_3)\)
\((v_0 \lor \bar{v}_2 \lor v_3)\)
\((\bar{v}_0 \lor \bar{v}_1 \lor v_3)\)
\((\bar{v}_0 \lor v_1 \lor \bar{v}_3)\)
States of a SMURF representing $v_3 = \text{ite}(v_0, v_1, v_2)$
Smurfs Don’t Have to be Big

\[\text{ite}(v_1, v_2 \land (v_3 \oplus v_4), v_4 \land (v_2 \oplus v_3)) \]

\[\text{ite}(v_1, v_3 \oplus v_4, v_4 \land \overline{v_3}) \]

\[\text{ite}(v_1, v_2 \land \overline{v_3}, v_2 \oplus v_3) \]

\[\text{ite}(v_1, v_2 \land \overline{v_4}, \overline{v_2} \land v_4) \]

\[v_3 \oplus v_4 \]

\[v_2 \oplus v_3 \]

\[I \]

1 \[2\]

1 \[4\]

2

4

3

\[\overline{v_1} \[4\] \]

\[\overline{v_2} \[4\] \]

\[\overline{v_3} \[4\] \]

\[\overline{v_4} \[4\] \]

3 \[1/4\]

\[\overline{v_1} \[3/4\] \]

\[\overline{v_2} \[3/4\] \]

\[\overline{v_3} \[3/4\] \]

\[\overline{v_4} \[3/4\] \]
Locally Skewed, Globally Balanced Heuristics

Weight of terminal state is 0

If state s has p successors $\{s_1, s_2, \ldots, s_p\}$, weight of s is

$$\sum_{i=1}^{p} \frac{\text{weightOf}(s_i) + \text{numberInferencesMadeEnrouteTo}(s_i)}{K \cdot p}$$

Every state transition gets a weight:

- # inferences to destination state plus weight of that state

Every literal gets a score:

- Sum of transition weights for that literal across SMURFs

Every variable v gets a score:

$$(\text{score}(v) + \epsilon) \times (\text{score}(\bar{v}) + \epsilon)$$

Branch on highest scoring variable
Locally Skewed, Globally Balanced Heuristics

\[
\begin{aligned}
&\text{ite}(v_1, v_2 \land (v_3 \oplus v_4), v_4 \land (v_2 \oplus v_3)) \\
&\text{ite}(v_1, v_3 \oplus v_4, v_4 \land \bar{v}_3) \\
&\text{ite}(v_1, v_2 \land \overline{v}_3, v_2 \oplus v_3) \\
&\text{ite}(v_1, v_2 \land \bar{v}_4, \bar{v}_2 \land v_4)
\end{aligned}
\]

\[
\left(10 + \frac{8}{3}(1/K) + 1/(3K^2)\right)/(8K)
\]
Intuitively, we desire:

- Fewer State Machines
- Smaller State Machines
- Redundancies Removed Across State Machines
- Inferences Revealed and Assigned as Early as Possible
- Safe Assignments Revealed and Assigned Early
Search Space Profile for Hard Problems

![Graph showing the relationship between search breadth and depth.](image-url)
Hard Problems That Fit This Profile

For example, Bounded Model Checking problems
Tools for Pre-processing

- Restriction (eliminate redundancies, find inferences)
- Strengthening (find inferences missed by restriction)
- Generalized co-factor (eliminate functions)
- Cluster some functions (conjoin them)
- Existential Quantification (eliminate variables)
- Assign uninferred but safe values (reductions)
- Add uninferred and unsafe constraints (tunnel)
Spreading an inference from one function to another.

If \(v_2 = 0 \) in \(f \) then \(v_3 = v_4 = 0 \) is inferred.

Replacing \(f \) with \(f' \), gives inference \(v_4 = 0 \) from \(c \) (if \(v_2 = 0 \)) and then inference \(v_3 = 0 \) from \(f' \).
Existentially quantify away v_1 from f, then ...
Existentially quantify away v_1 from f, then ...

conjoin f and c to reveal inference $v_3 = 0$.
\[\exists v(f_1 \land \ldots \land f_m) \equiv (f_1 \land \ldots \land f_m)|_{v=0} \lor (f_1 \land \ldots \land f_m)|_{v=1} \]
Clustering and Existential Quantification

$$\exists v(f_1 \land \ldots \land f_m) \equiv (f_1 \land \ldots \land f_m)_{v=0} \lor (f_1 \land \ldots \land f_m)_{v=1}$$

But this is what we really want:

$$\exists v(f_1 \land \ldots \land f_m) \equiv (f_1|_{v=0} \lor f_1|_{v=1}) \land \ldots \land (f_m|_{v=0} \lor f_m|_{v=1})$$
Existential Quantification

Replace f with $(f|_{v=0} \lor f|_{v=1})$
Existential Quantification

Replace f with $(f|_{v=0} \lor f|_{v=1})$
Choose \(v_7 \) to separate \(v_1, v_2, v_3 \) from \(v_4, v_5, v_6 \).
Existential Quantification
Splitting An Expression Is Desirable

\[f_1 \land f_2 \land \ldots \land f_i \land f_{i+1} \land \ldots \land f_{m-1} \land f_m \]

If no variables in \(f_1 \) to \(f_i \) are in \(f_{i+1} \) to \(f_m \) and no variables in \(f_{i+1} \) to \(f_m \) are in \(f_1 \) to \(f_i \)

then \(\phi_1 = f_1 \land \ldots \land f_i \) and \(\phi_2 = f_{i+1} \land \ldots \land f_m \)

can be solved independently
Autark Assignments Come Close

\[f_1 \land f_2 \land \ldots \land f_i \land f_{i+1} \land \ldots \land f_{m-1} \land f_m \]

If there is a subset \(V' \) of variables in \(f_1 \) to \(f_i \) and an assignment \(t_{V'} \) of values to \(V' \) that satisfies \(f_1 \) to \(f_i \) and none of the variables of \(V' \) is in \(f_{i+1} \) to \(f_m \) then satisfy \(\phi_1 = f_1 \land \ldots \land f_i \) with partial assignment \(t_{V'} \) and solve \(\phi_2 = f_{i+1} \land \ldots \land f_m \) independently.
Safe Assignments

If \((f_1 \land \ldots \land f_m)|_{v=0} \equiv (f_1 \land \ldots \land f_m)|_{v=0} \lor (f_1 \land \ldots \land f_m)|_{v=1}\)
then \(v = 0\) is safe

If \((f_1 \land \ldots \land f_m)|_{v=1} \equiv (f_1 \land \ldots \land f_m)|_{v=0} \lor (f_1 \land \ldots \land f_m)|_{v=1}\)
then \(v = 1\) is safe

Example: \(v = 1\) is a safe assignment but is not autark:

\[f = (v \lor a) \land (v \lor \overline{a} \lor b) \land (\overline{v} \lor a \lor b \lor c) \land (\overline{b} \lor \overline{c}) \ldots \]

Because

\[f|_{v=0} = (a) \land (\overline{a} \lor b) \land (\overline{b} \lor \overline{c}) \rightarrow \]

\[f|_{v=1} = (\overline{a} \lor b \lor c) \land (\overline{b} \lor \overline{c}) \]
Safe Assignments: Checking isn’t too bad

But conjoining functions to find safe assignments can be expensive.

Luckily, the computational effort can be distributed:

If \((f_i|v \land f_i|\overline{v}) \equiv 0\) for every \(i\) such that \(v\) is in \(f_i\) then \(v = 1\) is safe.

If \((f_i|v \land f_i|\overline{v}) \equiv 0\) for every \(i\) such that \(v\) is in \(f_i\) then \(v = 0\) is safe.

But the check may fail on some safe assignments.

The idea extends to groups of variables.
Consider two functions f_1 and f_2
Finding safe assignment for v_4 in f_1 alone:
Finding safe assignment for v_4 in f_1 alone: $v_4 = 0$ only
Finding safe assignment for v_4 in f_2 alone:
Finding safe assignment for v_4 in f_2 alone: neither one
Safe Assignments: Some Are Missed

Conjoin the two functions $f_1 \land f_2$:
Safe Assignments: Some Are Missed

Conjoin the two functions then find $v_4 = 0$ is safe
Conjoin the two functions then find $v_4 = 0$ is safe, also $v_2 = 0$ is safe
Safe assignments $v_1 = v_2 = 1$ and $v_1 = 1, v_3 = 0$ are found as pairs only.
Search Space Profile for Hard Problems
Unsafe Assignments

- Guess some (uninferred) constraints based on solution structure in the same family
- Add those constraints initially to reduce the “hump”
- Run the search breadth-first
- When search breadth begins to decline, remove the constraints
- Solve to completion
- Possibly no solution found for a satisfiable input
Example: Van der Waerden Numbers

An ordering of the input variables is natural
Example: Van der Waerden Numbers

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

10100011101010010001110101001000111010

2 categories, progression length 4 \((W_{max}(2, 4) \text{ formula})\)
Example: Van der Waerden Numbers

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

101000111010010001110110100111010

2 categories, progression length 4 (\(W_{max}(2, 4)\) formula)

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

2 categories, progression length 5 (\(W_{max}(2, 5)\) formula)
Conjecture:

For every $W_{max}(2, l)$ formula there exists a solution that contains at least one reflected pattern of length $W(2, l)/(2 \times (l - 1))$ with the middle positioned somewhere between $W(2, l)/(l - 1)$ and $W(2, l) \times (l - 2)/(l - 1)$.
Conjecture:
For every $W_{\text{max}}(2, l)$ formula there exists a solution that contains at least one reflected pattern of length $W(2, l)/(2 \times (l - 1))$ with the middle positioned somewhere between $W(2, l)/(l - 1)$ and $W(2, l) \times (l - 2)/(l - 1)$.

From search profile:
The maximum breadth occurs near depth $W(2, l)/(2(l - 1))$.

$W(2, l) \approx l \times W(2, l - 1)$, for small l anyway.
Add the unsafe constraints:

<table>
<thead>
<tr>
<th>Function Seg</th>
<th>Range</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>((v_{-i} \lor v_{i+1}) \land (\bar{v}{-i} \lor \bar{v}{i+1}))</td>
<td>(0 \leq i < s/2)</td>
<td>force (v_{-i} \equiv \bar{v}_{i+1}).</td>
</tr>
</tbody>
</table>
Add the unsafe constraints:

<table>
<thead>
<tr>
<th>Function Seg</th>
<th>Range</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>((v_{-i} \lor v_{i+1}) \land (\bar{v}{-i} \lor \bar{v}{i+1}))</td>
<td>(0 \leq i < s/2)</td>
<td>force (v_{-i} \equiv \bar{v}_{i+1}).</td>
</tr>
</tbody>
</table>

Retract the constraints at depth

\((l \ast W(2, l - 1))/(2(l - 1))\)
Add the unsafe constraints:

<table>
<thead>
<tr>
<th>Function Seg</th>
<th>Range</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>((v_i \lor v_{i+1}) \land (\bar{v}i \lor \bar{v}{i+1}))</td>
<td>(0 \leq i < s/2)</td>
<td>force (v_i \equiv \bar{v}_{i+1}).</td>
</tr>
</tbody>
</table>

Retract the constraints at depth

\((l \times W(2, l - 1))/(2(l - 1))\)

Continue without unsafe constraints until the end
Summary

State Machines
- Support function-complete look-ahead
- Efficiently support complex heuristics
- Efficiently admit special forms, e.g. cardinality constraints
- Efficiently admit backjumping, lemmas, restarts, etc.

Preprocessing
- Restrict, Existential Quantification, Strengthening help

Safe Assignments

Unsafe Assignments