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Abstract

Interactive dynamic influence diagrams (I-DID) are graphi-
cal models for sequential decision making in uncertain set-
tings shared by other agents. Algorithms for solving I-DIDs
face the challenge of an exponentially growing space of can-
didate models ascribed to other agents, over time. Pruning
the behaviorally equivalent models is one way toward iden-
tifying a minimal model set. We further reduce the com-
plexity by pruning models that are approximately behav-
iorally equivalent. Toward this, we redefine behavioral equiv-
alence in terms of the distribution over the subject agent’s
future action-observation paths, and introduce the notion of
ǫ-behavioral equivalence. We present a new approximation
method that reduces the candidate models by pruning models
that areǫ-behaviorally equivalent with representative ones.

1 Introduction
Interactive dynamic influence diagrams (I-DID) (Doshi,
Zeng, & Chen 2009) are graphical models for sequential de-
cision making in uncertain multiagent settings. I-DIDs con-
cisely represent the problem of how an agent should act in
an uncertain environment shared with others who may act
in sophisticated ways. I-DIDs may be viewed as graphi-
cal counterparts of interactive POMDPs (I-POMDPs) (Gmy-
trasiewicz & Doshi 2005), providing a way to model and
exploit the embedded structure often present in real-world
decision-making situations. They generalize DIDs (Tat-
man & Shachter 1990), which are graphical representations
of POMDPs, to multiagent settings analogously to how I-
POMDPs generalize POMDPs.

As we may expect, I-DIDs acutely suffer from both the
curses of dimensionality and history. This is because the
state space in I-DIDs includes the models of other agents
in addition to the traditional physical states. These models
encompass the agents’ beliefs, action and sensory capabili-
ties, and preferences, and may themselves be formalized as
I-DIDs. The nesting is terminated at the0th level where the
other agents are modeled using DIDs. As the agents act, ob-
serve, and update beliefs, I-DIDs must track the evolution of
the models over time. Consequently, I-DIDs not only suf-
fer from the curse of history that afflicts the modeling agent,
but more so from that exhibited by the modeled agents. The
exponential growth in the number of models over time also
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further contributes to the dimensionality of the state space.
This is complicated by the nested nature of the space.

Previous approaches for approximating I-DIDs focus on
reducing the dimensionality of the state space by limiting
the number of candidate models of other agents. Using the
insight that beliefs that are spatially close are likely to be
behaviorally equivalent (Rathnas., Doshi, & Gmytrasiewicz
2006), Zeng et al. (2007) cluster the models of other agents
and select representative models from each cluster. Intu-
itively, a cluster contains models that are likely to be be-
haviorally equivalent and hence may be replaced by a sub-
set of representatives without a significant loss in the opti-
mality of the decision maker. However, this approach often
retains more models than needed. Doshi and Zeng (2009)
formalize the concept of aminimal setof models using be-
havioral equivalence. At each step, only those models are
updated which will result in predictive behaviors that are
distinct from others in the updated model space. Minimal
sets of models were previously discussed by Pynadath and
Marsella (2007) which, in addition to discussing behavior
equivalence proposed to further cluster models using utility
equivalence. Notice that models that are behaviorally equiv-
alent are also utility equivalent for the subject agent. We
are currently investigating the applicability of utility equiv-
alence in the context of I-DIDs.

In this paper, we aim to reduce the model space by addi-
tionally pruning models that are approximately behaviorally
equivalent. Toward this objective, we introduce the concept
of ǫ-behavioral equivalenceamong candidate models. In
doing so, we redefine behavioral equivalence as the class of
models of the other agents that induce an identical distribu-
tion over the subject agent’s future action-observation paths
in the interaction. Subsequently, models that induce distri-
butions over the paths, which are no more thanǫ ≥ 0 apart
are termed as beingǫ-behaviorally equivalent. Intuitively,
this results in a lesser number of equivalence classes in the
partition. If we pick a single representative model from each
class, we typically end up with no more models than in the
minimal set which need be solved thereby improving on ap-
proaches that utilize exact behavioral equivalence.

We begin by selecting a model at random and grouping
togetherǫ-behaviorally equivalent models with it. We re-
peat this procedure for the remaining models until all mod-
els have been grouped. The retained model set consists of



the representative model from each equivalence class. In the
worst case (ǫ = 0), our approach identifies exact behavioral
equivalence and the model set consists of all the behaviorally
unique models. We discuss the error introduced by this ap-
proach in the optimality of the solution. More importantly,
we experimentally evaluate our approach on I-DIDs formu-
lated for a benchmark problem, and mention its limitations.

2 Background: Interactive DID
2.1 Syntax
In addition to the usual chance (oval), decision (rectangu-
lar), and utility (diamond shaped) nodes, I-IDs include a
new type of node called themodel node(hexagonal node,
Mj,l−1, in Fig. 1(a)). We note that the probability distribu-
tion over the chance node,S, and the model node together
represents agenti’s belief over itsinteractive state space. In
addition to the model node, I-IDs differ from IDs by having
a chance node,Aj , that represents the distribution over the
other agent’s actions, and a dashed link, called apolicy link.
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Figure 1:(a) A generic levell > 0 I-ID for agenti situated with
one other agentj. The hexagon is the model node (Mj,l−1) and the
dashed arrow is the policy link.(b) Representing the model node
and policy link using chance nodes and dependencies.

The model node contains as its values the alternative com-
putable models ascribed byi to the other agent. We de-
note the set of these models byMj,l−1. A model in the
model node may itself be an I-ID or ID, and the recur-
sion terminates when a model is an ID or a simple proba-
bility distribution over the actions. Formally, we denote a
model of j as, mj,l−1 = 〈bj,l−1, θ̂j〉, wherebj,l−1 is the
level l − 1 belief, andθ̂j is the agent’sframeencompassing
the action, observation, and utility nodes. We observe that
the model node and the dashed policy link that connects it
to the chance node,Aj , could be represented as shown in
Fig. 1(b). The decision node of each levell−1 I-ID is trans-
formed into a chance node. Specifically, ifOPT is the set
of optimal actions obtained by solving the I-ID (or ID), then
Pr(aj ∈ A1

j ) = 1
|OPT | if aj ∈ OPT , 0 otherwise. The

conditional probability table (CPT) of the chance node,Aj ,
is amultiplexer, that assumes the distribution of each of the
action nodes (A1

j , A
2
j ) depending on the value ofMod[Mj ].

In other words, whenMod[Mj ] has the valuem1
j,l−1, the

chance nodeAj assumes the distribution of the nodeA1
j , and

Aj assumes the distribution ofA2
j whenMod[Mj ] has the

valuem2
j,l−1. The distribution overMod[Mj ], is i’s belief

over j’s models given the state. For more than two agents,
we add a model node and a chance node representing the
distribution over an agent’s action linked together using a
policy link, for each other agent.
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Figure 2:A generic two time-slice levell I-DID for agenti.

I-DIDs extend I-IDs to allow sequential decision making
over several time steps (see Fig. 2). In addition to the model
nodes and the dashed policy link, what differentiates an I-
DID from a DID is themodel update linkshown as a dot-
ted arrow in Fig. 2. We briefly explain the semantics of the
model update next.
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Figure 3: The semantics of the model update link. Notice the
growth in the number of models att + 1 shown in bold.

The update of the model node over time involves two
steps: First, given the models at timet, we identify the up-
dated set of models that reside in the model node at time
t + 1. Because the agents act and receive observations, their
models are updated to reflect their changed beliefs. Since
the set of optimal actions for a model could include all the
actions, and the agent may receive any one of|Ωj | possible
observations, the updated set at time stept + 1 will have
up to |Mt

j,l−1||Aj ||Ωj | models. Here,|Mt
j,l−1| is the num-

ber of models at time stept, |Aj | and |Ωj | are the largest
spaces of actions and observations respectively, among all
the models. The CPT ofMod[M t+1

j,l−1] encodes the func-

tion, τ(bt
j,l−1, a

t
j , o

t+1
j , bt+1

j,l−1) which is 1 if the beliefbt
j,l−1

in the modelmt
j,l−1 using the actionat

j and observationot+1
j

updates tobt+1
j,l−1 in a modelmt+1

j,l−1; otherwise it is 0. Sec-
ond, we compute the new distribution over the updated mod-
els, given the original distribution and the probability ofthe



agent performing the action and receiving the observation
that led to the updated model. The dotted model update
link in the I-DID may be implemented using standard de-
pendency links and chance nodes, as shown in Fig. 3 trans-
forming it into a flat DID.

2.2 Behavioral Equivalence and Solution

Although the space of possible models is very large, not all
models need to be considered in the model node. Models
that arebehaviorally equivalent(Pynadath & Marsella 2007;
Rathnas., Doshi, & Gmytrasiewicz 2006) – whose behav-
ioral predictions for the other agent are identical – could be
pruned and a single representative model considered. This
is because the solution of the subject agent’s I-DID is af-
fected by the predicted behavior of the other agent only;
thus we need not distinguish between behaviorally equiv-
alent models. LetBehavioralEq(Mj,l−1) be the procedure
that prunes the behaviorally equivalent models fromMj,l−1

returning the set of representative models.
The solution of an I-DID (and I-ID) proceeds in a bottom-

up manner, and is implemented recursively as shown in
Fig. 4. We start by solving the level 0 models, which may be
traditional DIDs. Their solutions provide probability distri-
butions which are entered in the corresponding action nodes
found in the model node of the level 1 I-DID. The solution
method uses the standard look-ahead technique, projecting
the agent’s action and observation sequences forward from
the current belief state, and finding the possible beliefs that
i could have in the next time step. Because agenti has a
belief overj’s models as well, the look-ahead includes find-
ing out the possible models thatj could have in the future.
Consequently, each ofj’s level 0 models represented using
a standard DID in the first time step must be solved to ob-
tain its optimal set of actions. These actions are combined
with the set of possible observations thatj could make in
that model, resulting in an updated set of candidate mod-
els (that include the updated beliefs) that could describe the
behavior ofj. SE(bt

j , aj , oj) is an abbreviation for the be-
lief update. The updated set is minimized by excluding the
behaviorally equivalent models. Beliefs over these updated
set of candidate models are calculated using the standard in-
ference methods through the dependency links between the
model nodes (Fig. 3). The algorithm in Fig. 4 may be real-
ized using the standard implementations of DIDs.

3 Redefining Behavioral Equivalence
We assume that the models ofj have identical frames and
differ only in their beliefs. As mentioned previously, two
models of the other agent are behaviorally equivalent (BE)
if they produce identical behaviors for the other agent. More
formally, modelsmj,l−1, m̂j,l−1 ∈ Mj,l−1 are BE if and
only if OPT (mj,l−1) = OPT (m̂j,l−1), whereOPT (·) de-
notes the solution of the model that forms the argument. If
the model is a DID or an I-DID, its solution is a policy tree.

Our aim is to identify models that areapproximatelyBE.
While a pair of policy trees may be checked for equality, dis-
parate policy trees do not directly permit intuitive behavioral
comparisons. This makes it difficult to define a measure of

I-DID E XACT (level l ≥ 1 I-DID or level 0 DID, T )
Expansion Phase
1. For t from 1 to T − 1 do
2. If l ≥ 1 then

PopulateM t+1

j,l−1

3. For eachmt
j inMt

j,l−1 do
4. Recursively call algorithm with thel − 1 I-DID(or DID)

that representsmt
j and the horizon,T − t

5. Map the decision node of the solved I-DID (or DID),
OPT (mt

j), to the chance nodeAt
j

6. For eachaj in OPT (mt
j) do

7. For eachoj in Oj (part ofmt
j) do

8. Updatej’s belief,bt+1

j ← SE(bt
j , aj , oj)

9. mt+1

j ← New I-DID (or DID) with bt+1

j as belief

10. Mt+1

j,l−1

∪

← {mt+1

j }

11. Add the model node,M t+1

j,l−1
, and the model update link

betweenM t
j,l−1 andM t+1

j,l−1

12. Add the chance, decision and utility nodes fort+1 time slice
and the dependency links between them

13. Establish the CPTs for each chance node and utility node
Solution Phase
14. If l ≥ 1 then
15. Represent the model nodes and the model update link

as in Fig. 3 to obtain the DID
Minimize model spaces

16. For t from 1 to T do
17. Mt

j,l−1← BehavioralEq(Mt
j,l−1)

18. Apply the standard look-ahead and backup method to solve the
expanded DID (other solution approaches may also be used)

Figure 4: Algorithm for exactly solving a levell ≥ 1 I-DID or
level 0 DID expanded overT time steps.

approximate BE, motivating investigations into a more rig-
orous formalization of BE.

Recall that BE models impact the decision-making of
the modeling agent similarly, thereby motivating interest
in grouping such models together. We utilize this in-
sight toward introducing a new definition of BE. Leth =
{at

i, o
t+1
i }Tt=1 be the action-observation path for the model-

ing agenti, whereoT+1
i is null for aT horizon problem. If

at
i ∈ Ai andot+1

i ∈ Ωi, whereAi andΩi are i’s action
and observation sets respectively, then the set of all pathsis,
H = ΠT

1 (Ai × Ωi), and the set of action-observation histo-
ries up to timet is Ht = Πt−1

1 (Ai × Ωi). The set of future
action-observation paths is,HT−t = ΠT

t (Ai × Ωi), where
t is the current time step.

We observe that agentj’s model together with agent
i’s perfect knowledge of its own model and its action-
observation history induces a predictive distribution over
i’s future action-observation paths. This distribution plays
a critical role in our approach and we denote it as,
Pr(HT−t|h

t,mi,l,m
t
j,l−1), whereht ∈ Ht, mi,l is i’s level

l I-DID andmt
j,l−1 is the levell−1 model ofj in the model

node at timet. For the sake of brevity, we rewrite the dis-
tribution term as,Pr(HT−t|m

t
i,l,m

t
j,l−1), wheremt

i,l is i’s
horizonT − t I-DID with its initial belief updated given the
actions and observations inht. We define BE below:



Definition 1 (Behavioral Equivalence). Two models of agent
j, mt

j,l−1 and m̂t
j,l−1, are behaviorally equivalent if and

only if Pr(HT−t|m
t
i,l,m

t
j,l−1) = Pr(HT−t| m

t
i,l, m̂

t
j,l−1),

whereHT−t andmt
i,l are as defined previously.

In other words, BE models are those that induce an identi-
cal distribution over agenti’s future action-observation his-
tory. This reflects the fact that such models impact agenti’s
behavior similarly.

Let hT−t be some future action-observation path of agent
i, hT−t ∈ HT−t. In Proposition 1, we provide a recursive
way to arrive at the probability,Pr(hT−t|m

t
i,l,m

t
j,l−1). Of

course, the probabilities over all possible paths sum to 1.

Proposition 1. Pr(hT−t|m
t
i,l, m

t
j,l−1) =

Pr(at
i, o

t
i|m

t
i,l, m

t
j,l−1)

∑

at
j
,o

t+1

j
Pr(hT−t−1|m

t+1

i,l , mt+1

j,l−1
) ×

Pr(at
j , o

t+1

j |at
i, m

t
i,l, m

t
j,l−1)

where

Pr(at
i, o

t+1

i |mt
i,l, m

t
j,l−1) = Pr(at

i|OPT (mt
i,l))

∑

at
j
Pr(at

j |

OPT (mt
j,l−1))

∑

st+1 Oi(s
t+1, at

i, a
t
j , o

t+1

i )
×

∑

s,mj
Ti(s, a

t
i, a

t
j , s

t+1) bt
i,l(s, mj)

(1)
and

Pr(at
j , o

t+1

j |at
i, m

t
i,l, m

t
j,l−1) = Pr(at

j |OPT (mt
j,l−1))

∑

st+1

Oj(s
t+1, at

j , a
t
i, o

t+1

j )
∑

s,mj
Ti(s, a

t
i, a

t
j , s

t+1)bt
i,l(s, mj)

(2)

In Eq. 1,Oi(s
t+1, at

i, a
t
j , o

t+1
i ) is i’s observation function

contained in the CPT of the chance node,Ot+1
i , in the I-

DID, Ti(s, a
t
i, at

j , s
t+1) is i’s transition function contained

in the CPT of the chance node,St+1, Pr(at
i|OPT (mt

i,l)) is
obtained by solving agenti’s I-DID, Pr(at

j |OPT (mt
j,l−1))

is obtained by solvingj’s model and appears in the CPT of
node,At

j . In Eq. 2,Oj(s
t+1, at

j , at
i, o

t+1
j ) is j’s observation

function contained in the CPT of the chance node,Ot+1
j ,

givenj’s model ismt
j,l−1.

Now that we have a way of computing the distribution
over the future paths, we may relate Definition 1 to our pre-
vious understanding of BE models:

Proposition 2 (Correctness). Pr(HT−t|m
t
i,l,m

t
j,l−1)

= Pr(HT−t|m
t
i,l, m̂t

j,l−1) if and only ifOPT (mt
j,l−1) =

OPT (m̂t
j,l−1), wheremt

j,l−1 andm̂t
j,l−1 are j’s models.

A simple method for computing the distribution over the
paths given models ofi andj is to replace agenti’s decision
nodes in the I-DID with chance nodes so thatPr(ai ∈ At

i)
= 1

|OPT (mt
i,l

)|
and remove the utility nodes, thereby trans-

forming the I-DID into a dynamic Bayesian network (DBN).
The desired distribution is then the marginal over the chance
nodes that representi’s actions and observations withj’s
model entered as evidence in the Mod node att.

4 ǫ-Behavioral Equivalence
4.1 Definition
We introduce the notion ofǫ-behavioral equivalence (ǫ-BE):

Definition 2 (ǫ-BE). Givenǫ ≥ 0, two models,mt
j,l−1 and

m̂t
j,l−1, areǫ-BE if the divergence between the distributions

Pr(HT−t|m
t
i,l,m

t
j,l−1) and Pr(HT−t|m

t
i,l, m̂

t
j,l−1) is no

more thanǫ.

Here, the distributions overi’s future paths are computed
as shown in Proposition 1. While multiple ways to measure
the divergence between distributions exist, we utilize the
well-known Kullback-Leibler (KL) divergence (Kullback &
Leibler 1951) in its symmetric form, in this paper. Conse-
quently, the models areǫ-BE if,

DKL(Pr(HT−t|m
t
i,l,m

t
j,l−1)||Pr(HT−t|m

t
i,l, m̂

t
j,l−1)) ≤ ǫ

whereDKL(p||p′) denotes the symmetric KL divergence
between distributions,p andp′, and is calculated as:

DKL(p||p′) =
1

2

∑

k

(

p(k)log
p(k)

p′(k)
+ p′(k)log

p′(k)

p(k)

)

If ǫ = 0, ǫ-BE collapses into exact BE. Sets of models
exhibitingǫ-BE for some non-zero but smallǫ do not differ
significantly in how they impact agenti’s decision making.
These models could be candidates for pruning.

4.2 Approach
We proceed by picking a model ofj at random,mt=1

j,l−1, from
the model node in the first time step, which we call the repre-
sentative. All other models in the model node that areǫ-BE
with mt=1

j,l−1 are grouped together with it. Of the remaining
models, another representative is picked at random and the
previous procedure is repeated. The procedure terminates
when no more models remain to be grouped. We illustrate
the process in Fig. 5. We point out that forǫ > 0, in gen-
eral, more models will likely be grouped together than if we
considered exact BE. This will result in a fewer number of
classes in the partition.

We first observe that the outcome is indeed a partition of
the model set intoǫ-BE classes. This is because we con-
tinue to pick representative models and build classes until
no model remains ungrouped. There is no overlap between
classes since new ones are built only from the models that
did not get previously grouped. We observe that the rep-
resentatives of different classes areǫ-behaviorally distinct,
otherwise they would have been grouped together. However,
this set is not unique and the partition could change with dif-
ferent representatives. Furthermore, letM̂j be the largest
set of behaviorally distinct models, also called the minimal
set (Doshi & Zeng 2009). Then, the following holds:

Proposition 3 (Cardinality). Theǫ-BE approach results in
at most|M̂j |models after pruning.

Intuitively, the Proposition follows from the fact that in
the worst case,ǫ = 0, resulting in behaviorally distinct mod-
els.

Transfer of probability mass From each class in the par-
tition, the previously picked representative is retained and
all other models are pruned. The representatives are dis-
tinguished in that all models in its group areǫ-BE with it.
Unlike exact BE,ǫ-BE relation is not necessarily transitive.
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Figure 5: Illustration of the iterativeǫ-BE model grouping using
the tiger problem. Black vertical lines denote the beliefs contained
in different models of agentj included in the initial model node,
M1

j,0. Decimals on top indicatei’s distribution overj’s models.
We begin by picking a representative model (red line) and grouping
models that areǫ-BE with it. Unlike exact BE, models in a different
behavioral (shaded) region get grouped as well. Of the remaining
models, another is selected as representative. Agenti’s distribution
over the representative models is obtained by summing the proba-
bility mass assigned to the individual models in each class.

Consequently, we may not select any model from each class
as the representative since others may not beǫ-BE with it.

Recall that agenti’s belief assigns some probability mass
to each model in the model node. A consequence of pruning
some of the models is that the mass assigned to the models
would be lost. Disregarding this probability mass may in-
troduce further error in the optimality of the solution. We
avoid this error by transferring the probability mass over the
pruned models in each class to theǫ-BE representative that
is retained in the model node (see Fig. 5).

Sampling actions and observations Recall that the pre-
dictive distribution overi’s future action-observation paths,
Pr(HT−t|h

t, mi,l,m
t
j,l−1), is conditioned on the history of

i’s observations,ht, as well. Because the model grouping is
performed while solving the I-DID when we do not know the
actual history, we obtain a likelyht by samplingi’s actions
and observations for subsequent time steps in the I-DID.

Beginning with the first time step, we pick an action,at
i,

at random assuming that each action is equally likely. An
observation is then sampled from the distribution giveni’s
sampled action and belief,ot+1

i ∼ Pr(Ωi|a
t
i, b

t
i,l), where

bt
i,l is the prior belief. We utilize this sampled action and

observation pair as the history,ht ∪
← 〈at

i, o
t+1
i 〉. We may

implement this procedure by entering as evidencei’s action
in the node,At

i, of the DBN (mentioned in Section 3) and
sampling from the inferred distribution over the node,Ot+1

i .

Finally, we note that in computing the distribution over
the paths, solution to agenti’s I-DID is needed as well
(Pr(at

i|OPT (mt
i,l)) term in Eq. 1). As we wish to avoid

this, we observe thatǫ-BE is based on thecomparative im-
pact that j’s models have oni, which is independent of
i’s decisions. Therefore, we assume a uniform distribution
overi’s actions,Pr(at

i|OPT (mt
i,l)) = 1

|Ai|
, which does not

change theǫ-BE of models.

5 Algorithm
We present the algorithm for partitioning the models in the
model node of the I-DID at each time step according to
ǫ-BE, in Fig. 6. The procedure,ǫ-BehaviorEquivalence
replaces the procedure,BehaviorEq, in the algorithm in
Fig. 4. The procedure takes as input, the set ofj’s models,
Mj , the agenti’s DID, mi, current time step and horizon,
and the approximation parameter,ǫ. The algorithm begins
by computing the distribution over the future paths ofi for
each model ofj. If the time step is not the initial one, the
prior action-observation history is first sampled. We may
compute the distribution by transforming the I-DID into a
DBN as mentioned in Section 3 and entering the model ofj
as evidence – this implements Eqs. 1 and 2.

ǫ-BEHAVIOR EQUIVALENCE (Model setMj , DID mi,
current time steptt, horizonT , ǫ) returnsM′

j

1. Transform DIDmi into DBN by replacingi’s decision nodes
with chance nodes having uniform distribution

2. For t from 1 to tt do
3. Sample,at

i ∼ Pr(At
i)

4. Enterat
i as evidence into chance node,At

i, of DBN
5. Sample,ot+1

i ∼ Pr(Ot+1

i )

6. ht ∪

← 〈at
i, o

t+1

i 〉
7. For eachmk

j inMj do
8. Compute the distribution,P [k]← Pr(HT−t|h

t, mi, m
k
j ),

obtained from the DBN by enteringmk
j as evidence (Prop. 1)

Clustering Phase
9. WhileMj not empty

10. Select a model,mk̂
j ∈Mj , at random

11. Initialize,Mk̂
j ← {m

k̂
j }

12. For eachmk
j inMj do

13. If DKL(P [k̂]||P [k]) ≤ ǫ

14. Mk̂
j

∪

← mk
j , Mj

−

← mk
j

Selection Phase

15. For eachMk̂
j do

16. Retain the representative model,M′

j

∪

← mk̂
j

17. ReturnM′

j

Figure 6:Algorithm for partitioningj’s models usingǫ-BE. This
function replacesBehaviorEq() in Fig. 4.

We then pick a representative model at random, and using
the cached distributions group together models whose distri-
butions exhibit a divergence less thanǫ from the distribution
of the representative model. We iterate over the models left
ungrouped until none remain. Each iteration results in a new
class of models including a representative. In the final selec-
tion phase, all models except the representative are pruned
from each class in the partition. The set of representative
models, which areǫ-behaviorally distinct, are returned.

6 Computational Savings and Error Bound
As with previous approaches, the primary complexity of
solving I-DIDs is due to the large number of models that
must be solved overT time steps. At some time stept, there
could be|M0

j |(|Aj ||Ωj |)
t many models of the other agent

j, where|M0
j | is the number of models considered initially.
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Figure 7: Performance profile obtained by solving a level 1 I-DID for the multiagent tiger problem using theǫ-BE approach for(a) 3
horizons and(b) 4 horizons. Asǫ reduces, quality of the solution improves and approaches that of the exact. (c) Comparison ofǫ-BE and
DMU in terms of the rewards obtained given identical numbers of models inthe initial model node after clustering and pruning.

The nested modeling further contributes to the complexity.
In an N+1 agent setting, if the number of models consid-
ered at each level for an agent is bound by|M|, then solv-
ing an I-DID at levell requires the solutions ofO((N |M|)l)
many models. As we mentioned in Proposition 3, theǫ-BE
approximation reduces the number of agent models at each
level to at most the size of the minimal set,|M̂t|. In do-
ing so, it solves|M0

j | many models initially and incurs the
complexity of performing inference in a DBN for comput-
ing the distributions. This complexity while significant is
less than that of solving DIDs. Consequently, we need to
solve at mostO((N |M̂∗|)l) number of models at each non-
initial time step, typically less, wherêM∗ is the largest of
the minimal sets, in comparison toO((N |M|)l). HereM
grows exponentially over time. In general,|M̂| ≪ |M|,
resulting in a substantial reduction in the computation. Ad-
ditionally, a reduction in the number of models in the model
node also reduces the size of the state space, which makes
solving the upper-level I-DID more efficient.

We assume that lower-level models of the other agent are
solved exactly, and analyze the conditional error bound of
this approach. In the trivial case,ǫ=0, and there is no opti-
mality error in the solution. If we limit the pruning ofǫ-BE
models to the initial model node, the error is due to trans-
ferring the probability mass of the pruned model to the rep-
resentative, effectively replacing the pruned model with the
representative. The maximum error in the solution ofi’s I-
DID due to this transfer could be(Rmax

i − Rmin
i )T , where

T is the horizon of the I-DID. However, the divergence in
the impact of the pruned model and the representative oni’s
action-observation path is no more thanǫ. Hence, the effec-
tive error bound is:(Rmax

i −Rmin
i )T × ǫ.

Matters become more complex when we additionally
prune models in the subsequent model nodes as well. This is
because rather than comparing over distributions given each
history of i, we samplei’s action-observation history. Con-
sequently, additional error incurs due to the sampling, which
is difficult to bound. Finally, Doshi and Zeng (2009) show
that it is difficult to usefully bound the error if lower-level
models are themselves solved approximately. This limita-
tion is significant because approximately solving lower-level
models could bring considerable computational savings.

In summary, error ini’s behavior due to pruningǫ-BE

models in the initial model node may be bounded, but we
continue to investigate how to usefully bound the error due
to multiple additional approximations.

7 Experimental Evaluation

We implemented the algorithms in Figs. 4 and 6 and show
preliminary results for the well-known two-agenttiger prob-
lem(|S|=2, |Ai|=|Aj |=3, |Ωi|=6, |Ωj |=3) (Gmytrasiewicz &
Doshi 2005). We formulate a level 1 I-DIDs for the problem,
and solve them approximately for varyingǫ. We show that,
(i) the quality of the solution generated using our approach
(ǫ-BE) improves as we reduceǫ for given numbers of ini-
tial models of the other agent,M0, and approaches that of
the exact solution; and(ii) in comparison to the approach
of updating models discriminatively (DMU) (Doshi & Zeng
2009), which is the current efficient technique,ǫ-BE is able
to obtain larger rewards for an identical number of initial
models. This indicates a more informed clustering and prun-
ing usingǫ-BE although it is less efficient in doing so.

In Fig. 7(a, b), we show the average rewards gathered by
executing the policies obtained from solving the level 1 I-
DIDs approximately. Each data point is the average of 300
runs where the true model ofj is picked randomly according
to i’s belief. Notice that as we reduceǫ the policies tend to
converge to the exact (denoted by flat lines) and this remains
true for different numbers of initial models. Values of these
policies increase asi considers greater numbers of mod-
els thereby improving it’s chances of modelingj correctly.
Next, we compare the performance of this approach with
that of DMU (Fig. 7(c)). While both approaches cluster and
prune models, DMU does so only in the initial model node,
thereafter updating only those models which on update will
be behaviorally distinct. Thus, we compare the average re-
wards obtained by the approaches when an identical num-
ber of models remain in the initial model node after cluster-
ing and selection. This allows us to compare between the
clustering and selection techniques of the two approaches.
From Fig. 7(c), we observe thatǫ-BE results in better qual-
ity policies that obtain significantly higher average reward.
This indicates that the models pruned by DMU were more
valuable than those pruned byǫ-BE, thereby testifying to the
more informed way in which we compare between models
by gauging the impact oni’s history. DMU’s approach of



measuring simply the closeness of beliefs in models for clus-
tering results in significant models being pruned. However,
the tradeoff is the increased computational cost in calculat-
ing the distributions over future paths. To illustrate,ǫ-BE
consumed an average of 9.1 secs in solving a 4 horizon I-
DID with 25 initial models and differingǫ, which represents
approximately a three-fold increase compared to DMU.

8 Conclusion
Our initial results demonstrate the potential for obtaining
flexible approximations of I-DIDs by pruning models that
are approximately BE, and motivates further investigations.
However, we face the challenge of computing distributions
over a number of paths that grow exponentially with hori-
zon. Nevertheless, we expect to be able to solve I-DIDs
of longer time horizons in reasonable time and with larger
numbers of models, as we optimize our implementation and
seek ways to mitigate the curse of history.
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