Resolution Tunnels for Improved SAT Solver
Performance

Michal Kouril'! and John Franco!

University of Cincinnati, Cincinnati, OH 45221-0030, USA
mkouril@ececs.uc.edu,
WWW home page: http://wuw.ececs.uc.edu/ mkouril

Abstract. We show how to aggressively add uninferred constraints, in
a controlled manner, to formulas for finding Van der Waerden numbers
during search. We show that doing so can improve the performance of
standard SAT solvers on these formulas by orders of magnitude. We ob-
tain a new and much greater lower bound for one of the Van der Waerden
numbers, specifically a bound of 1132 for W (2, 6). We believe this bound
to actually be the number we seek. The structure of propositional formu-
las for solving Van der Waerden numbers is similar to that of formulas
arising from Bounded Model Checking. Therefore, we view this as a pre-
liminary investigation into solving hard formulas in the area of Formal
Verification.

1 Introduction

Resolution is a general procedure that may be used to determine whether a given
CNF expression has a model and to supply a certificate of unsatisfiability if it
doesn’t. The idea predates the often cited work reported in [22] and for decades
resolution has been one of the primary engines for CNF SAT solvers. In the
last 10 years tree resolution, in the form of variants of DPLL [10], has given
way to DAG resolution through the introduction of clause learning and record-
ing during search. This and other ideas have led to a spectacular improvement
in the performance of resolution-based SAT solvers. Hardware and algorithmic
improvements have together contributed to perhaps an order 10° speed-up in
SAT solving over the past 15 years and, consequently, some problems considered
very difficult then are now considered trivial. But there remain many problems
which are considered hard, for example in the important domains of protocol
and hardware verification.

The last 15 years has also seen some brilliant theoretical work that has re-
vealed exponential lower bounds for tree and DAG resolution, and has illumi-
nated the reasons for it, when resolution is applied to “sparse,” unsatisfiable
CNF formulas (e.g. [2-4,8, 13,18, 28]). In such cases, very large resolvents must
be created first, then resolved to get the smaller clause constraints that play a
significant role in establishing the refutation. Generating the large resolvents is
expensive, particularly since exponentially many have to be generated. In DPLL
terms, this means a search space of great breadth may have to be explored.

Metaphorically, we may think of search breadth as a mountain that must be
climbed; on the other side of the mountain the search breadth may be signif-
icantly reduced due to the short resolvents that are finally generated. Clearly,
we need to find some way to “tunnel” through this mountain and arrive quickly
in the fertile valley of low-breadth search space, if it exists. It is the aim of
this paper to explore this possibility for Boolean expressions with a particular
structure.

In the Satisfiability literature, the term “tunnel” has been applied to Stochas-
tic Local Search algorithms, a class which includes members of the WalkSAT,
GSAT, and other families [14,16,17,20,25]. In that context, one may think of
a location as an assignment of values to variables and the height at a location
as the number of constraints falsified by the assignment at that location. Then,
for a given, hard Boolean expression, there are generally many mountain peaks
and the objective is to locate and enter the deepest valley. Changing the value
of a single variable merely moves the current location up and down the side of
a mountain but changing values of several variables permits “tunneling” into
another valley. This use of tunneling is to be distinguished from the way we use
it: in our context there is one principal mountain to get over or around and the
valley on the other side can be quite wide. To reach the top of our mountain
one must wait for many large constraints to be learned. But, in many cases, we
cannot afford to wait: to reach the valley in a reasonable time, constraints must
be efficiently added before they are learned.

There are several ways to do this, some safe and some risky. A reasonably effi-
cient method for finding a safe tunnel, which is actually more like a cut, through
the mountain has been identified in [30] for a class of non-CNF formulas. Given
Boolean functions by, b, ..., by, let ¢ = by A -+ A by, and let V' = {vy, -+, i}
be a subset of variables occurring in ¢. Re-index the functions so that at least
one variable of V’/ occurs in b; for all 1 < 4 < n, and no variables of V'’ occur
in b;, for n < i < m. Let M’ = {Mj,---, M}, } be the set of all possible truth
assignments to the variables in V’. Write b;|p or ¢|a to mean the variables of
b; or ¢, respectively, are assigned values accoraing to &stsignment M, or are left
unassigned if they are not assigned in M.

Theorem 1. ([30]) For every 1 <i < 2%, define

si= "\ il n \/ bjlar).
1<i<n 1<osak
ki

Then, for any 1 <i < 2* if §; = False then ¢|pp is satisfiable if and only if ¢
1s satisfiable. |

According to Theorem 1, it may be possible to assign values to a particular set
of variables in such a way that the satisfiability of ¢ is unaffected. Those values
may not be inferred at all, but they are nevertheless safe to assign and doing
so reduces ¢ somewhat. A safe assignment is a generalization of the notion
of autarky [21], defined for CNF formulas, to formulas that are conjunctions

of Boolean functions. The test implied in the theorem can be conducted with
reasonable efficiency (see [30] for details).

Although safe assignments can be useful, substantial decreases in computa-
tional effort require more aggressive use of uninferred constraints. This need not
lead to errors: a constraint can be retracted during search if it is inferred False.
The field of non-monotonic reasoning has provided many insights on how this
might be done. Of course, we would like to be able to add constraints aggressively
without having to worry about retracting them and, as we show in this paper,
this can sometimes be done to achieve a result which is an approximation to
the actual result. In other words, the extra constraints may prevent an optimal
solution from being returned but are weak enough to admit suboptimal solutions
that are not far from optimal. But, if the extra constraints are too weak, a solver
may take too much time and not find a good suboptimal result. So, we need a
good “heuristic” for adding constraints in some optimal way.

At this point in time, it seems the spectacular tunneling success we seek,
which will be a consequence of our choice of tunnel heuristic, is practical only
by a careful analysis of the specific structure of a given formula. In this paper
we underscore this point by developing aggressive tunnel heuristics for formulas
associated with the problem of finding Van der Waerden numbers (described in
the next section). Such formulas are currently extremely difficult for off-the-shelf
SAT solvers, even though most of them are satisfiable. By adding aggressive tun-
nel constraints to the formulas, however, we are able to find the best bound yet,
by far, for W (2, 6). Our analysis serves as an example for attempting aggressive
tunnel heuristics for other hard problems.

2 Van der Waerden numbers and Satisfiability

Van der Waerden numbers arise from a set partition problem [29]. Partition the
set S, = {1,..n} of the first n positive consecutive integers into k classes. Let
P, (1) be a proposition that is True if and only if all partitions of S, into k
classes contain at least one arithmetic progression of length [in at least one
class. The k,l Van der Waerden number, denoted W (k, 1), is the minimum n for
which P, (1) is True.

There is no known closed form expression for W (k,) and all but five of the
first few numbers are unknown. Table 1 shows all the known Van der Waerden
numbers. In 1979 W (3, 4) became the most recent addition to this table.

K\I[3] 4] 5
29|35 178
3|27
476

Table 1. Known Van der Waerden numbers.

Upper and lower bounds on some of the remaining numbers have been derived
but they are so far apart that they are of little practical use. An unpublished
general upper bound is [31]

L(1+110)

S(1/B)€

W(k1)<e ,

and a general lower bound, due to the Lovdsz local lemma, is [31]

l

W (k,1) > <§—k) (14 o(1)).

Work on specific Van der Waerden numbers has sharpened some of these
bounds as the results of Table 2 (taken from [11]) show.

E\I[3 4 5 6 7 8
2 9 35 178 > 695 > 3702 > 7483
3| 27 >291 | > 1209 > 8385 > 43854 | > 161371
4| 76 > 1047 | > 10436 | > 90306 | > 262326
5 | >125 | >2253 | >24044 | > 177955
6 | >206 | >3693 | > 56692

Table 2. Known bounds on van der Waerden numbers.

The number W (k,) can be found by determining whether solutions exist for
certain formulas of a class of CNF formulas described in Table 3. We refer to a
formula of this class, with parameters n, k, [, by ¥}},. A solution exists for ¢, if
and only if n < W (k,1). So, several of these formulas may be solved for various
values of n until that boundary is reached. In this manuscript ¢y, is treated as
a set of clauses to make some algorithmic operations easier to express.

Variables Subscript Range Meaning
Vi 1<i<n,1<j<k vi; =1iff i € Cj
Clauses Subscript Range Meaning
{Di,r, Viys 1<i<n,1<r<s<k 1iisin at most one class
{vi1y -5V} 1<i<n i is in at least one class
{Orgs 1,55+ s Vrpi—1,5} 1<r<n-Il+1
{Vrj, Urg2,j s Upg2a-1),5} 1<j5<k no arithmetic progression
of length [in C;
{003, Ortej - Orpea-ny gt t=Ln—7)/(—1)]

Table 3. Formula ¢y, for finding Van der Waerden numbers. Equivalence classes are
named C1, Cy, ..., C} for convenience.

The nature of ¥}, is such that the number of solutions increases with n up to
a point, then decreases. The formulas, as expected, become more difficult in the
latter range. This difficulty may prevent the boundary from being reached or
even approached. In that case, there is no choice but to accept a lower bound
which is the largest n for which a solution to ¢, is found.

SAT solvers have been applied to the above formulations with the results
shown in Table 4 (taken from [11]), all lower bounds. Except in one case, all
these bounds are greatly inferior to those obtained analytically.

E\I[3 4 5 6 7 8
2 9 35 178 >341 | > 614 | > 1322
3| 27 >193 | > 676 | > 2236
4] 76 > 416
5| >125 | > 880
6 | >194

Table 4. Bounds on van der Waerden numbers obtained by SAT solvers ([11]).

We are interested in W (2,6). When we employ aggressive tunneling tech-
niques, we can push the lower bound to 1132 from the previously known best
value of 696 [27]. The reason we have a bound instead of the actual number is
that aggressive tunneling forces our SAT solver to be incomplete. We empha-
size that although an incomplete solver precludes finding a refutation for the
formula, it does provide an apparently tight bound for W (2,6). We believe the
bound is tight because it is obtained using three widely different tunnels.

Our interest in examining tunnels for Van der Waerden numbers is due partly
to this being an interesting problem to many mathematicians but mainly because
the propositional formulas for solving Van der Waerden numbers have a structure
that is similar to formulas found in Bounded Model Checking and other practical
applications. Therefore, we view this work as a preliminary to investigations on
problems in the area of Formal Verification, among others.

3 Formulation for W (2,6) and the tunnels

3.1 Formulation

Since we consider a case where k = 2, we reinterpret variables to remove some
of the constraints shown in Table 3. The formulas we consider are described
in Table 5. They use single index variables. For puposes of discussion, variable
indices have been translated so that vy and v; are the middle variables. In doing
s0, the number of variables is always even. It is straightforward to consider odd
variable formulas as well and we leave this for the reader. In what follows, n is
even when we consider formulas 95 g.

Variables Subscript Range Meaning
Vi —n/2<i<n/2 vi=1ifi4+n/2eCy
v; =0 ifi+n/2 € Cy
Clauses Subscript Range Meaning
{@i75i+1,---7@i+5} —n/2<z’§n/2—5
{0s,Tig2 ..., Vit10} no arithmetic progression

of length 6 in C4
{0, 0ipe .. Vigs} t=|(n/2-i+1)/5]
{vi7vi+1...7vi+5} —n/2<i§n/2—5
{vi, Vig2 ..., Vit10} no arithmetic progression
of length 6 in C>

{vi7vi+t‘.'.‘.7vi+5t} t= |_(n/2—1+1)/5j

Table 5. Formula ¢3¢, n even, for finding W (2,6). Classes are named Cp,Cs2 for
convenience.

3.2 Motivating the use of a tunnel - analyzing w?,z

The approach to finding W (2, 6) that is described below is the result of an anal-
ysis of the performance of an off-the-shelf SAT solver on formulas ¢5 , (Table 3),
and patterns of variable assignments satisfying those formulas. 7

Figure 1 shows SAT solver performance on 1y 5, for various values of n.
The vertical axis measures the number of nodes of the search space at the depth
indicated by the horizontal axis. In all cases, the entire search space was explored,
even if the input formula was satisfiable, but the results are similar if the solver
stops immediately upon discovering a solution. Although the displayed results
have been obtained using stock settings, similar results, which are not shown,
apply for various settings of SAT solver parameters. According to Figure 1 there
is a performance mountain that has roughly the same shape, regardless of n.
The mountain tails off to a point of little significance after rising to a formidible
peak. In addition to the mountain is a smaller peak which behaves more like a
wave since it always appears near n.

From performance curves and known Van der Waerden numbers and bounds
we have observed the following;:

Observation 1. Consider a performance plot of search breadth vs. depth for any
common SAT solver applied to 3 ,. Such a plot has two mazima, the greatest
of which occurs at approzimately the same depth, say W (2,1)/(2(1 — 1)), for
n > W(2,1)/(l —1). The value of the greatest mazimum is approzimately the
same for n > W(2,1)/(l — 1) and several orders of magnitude greater than the
search breadth at depth W (2,1)/(l — 1).

Observation 2. W(2,1) = 1+ W (2,1 — 1), at least for small l.

le+07 T T T T T T T T
vl
: DT e
1e+06 ; $iTO e E

100000

10000

1000

Breadth of Searchspace

100

10

1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Depth of Searchspace

Fig. 1. Typical SAT solver performance on 3 5 for various values of n. Each curve
shows the breadth of the search space at the search depth indicated on the horizontal.

From the above observations we propose a way to solve the very difficult
W(2,6) formulas. Start by searching for solutions to wg)% where n, is large
enough so that the mountain can be crossed but smaller than the suspected
value of W(2,6). By Observations 1 and 2, n, should be greater than about 210.
To get through the mountain, append a tunnel to the formula. We have devel-
oped three applicable tunnels which are specially designed to take advantage of
certain structural or analytical characteristics of the formulas and are described
separately in Section 3.4. The mountain is crossed when the search breadth is
considered “low.” From then on, by Observation 1, search is accomplished ef-
ficiently no matter what. Retract the tunnel. Add clauses so that the solver is
effectively seeing w;‘éﬂ for x = 1,2,3,... until search breadth falls to 0. The
depth at which this occurs is a bound on W (2, 6).

Details are given in the following sections.

3.3 Procedure for finding a bound on W (2, 6)

We used a SAT solver designed specifically to solve formulas ¢3,;, and which
incorporates special optimizations as outlined in Section 3.6. The outline below
briefly describes the search process using the special solver.

1. The solver is started on the input w;%, for some even n,, plus a collection of
clauses representing the tunnel. The parameter n, is determined according
to the description given in Section 3.2. There are three types of tunnels that

have been applied. Detailed descriptions are given in Section 3.4. All three
yield the same lower bound on W (2, 6) as stated in Section 3.4. Other tunnels
are possible but were not tried.

2. Instead of a depth-first, or even priority-driven evaluation of the search space,
as is commonly practiced, the solver conducts a strictly breadth-first evalua-
tion. We chose breadth-first search to find all solutions (not just the first one)
so we can at the point of n, remove the tunnel and continue the search by
extending the existing set of solutions. The order in which variables are con-
sidered for evaluation is fixed for all branches of the search tree, regardless of
values assigned previously. The order represents a reflection around the cen-
ter variable and is given as follows, from left to right: vg, v1,v_1,v2,v_2,
This is undoubetdly an inferior choice with respect to building the entire
search space. Reasons for this choice are given in Section 3.5.

3. The search reaches depth n, because there are so many solutions to 1/)3)"6 and
the tunnel constraints do not filter some of them. At this depth all variables
of ¥y% have been assigned values on all leaves of the search tree. Clauses

from the set 1/’;,%“ \ 5% are then added to the clause database of the solver
and the search commences as before. The tunnel is retracted.

Remark: The tunnel has been designed so that the mountain has been
crossed, for the most part, by this time. From this point on, the breadth of
the search space is moderately small because the values of many variables
are inferred on all branches, so the search continues quickly.

4. The following is repeated for m = 2,3, ... until the search breadth becomes
0: when the search depth reaches n, +m — 1, clauses from w;%+m \ 7,/137"6"’"1_1
are added to the solver’s clause database and the search continues. When

the search breadth becomes 0, a lower bound of n, + m is found for Wy .

Remark: Upon completion of every iteration of this step, a non-zero search
breadth means at least one solution for ;%+m_1 exists, hence n, +m is a
lower bound for W (2, 6).

Remark: There is no clause recording. Experiments show that zChaff, for
example, does not benefit from clause recording on this family of formulas.
We believe this is because the structure of the formulas is such that inferences
can only be determined at high search depth. This is why we needed the

tunnels in the first place.

With the above modifications to the SAT solver, and the improved formu-
lation shown in Table 5, a greatly improved bound for W(2,6) was obtained.
However, this was not the case if no tunnels had been added at the outset.

3.4 The tunnels

Three different aggressive tunneling techniques to improve SAT solver perfor-
mance are described in the subsections below. All three yield the same new
lower bound of 1132 for W(2,6). This is significant for two reasons: 1) this is a

big improvement over the previous best bound of 696 [27]; 2) since three different
techniques stopped at the same point, we conjecture W(2,6) = 1132.

First tunnel: The first tunnel arises from an analysis of solutions to 1/1;4/1(2’1)_1

(recall W(2,1) — 1 is the greatest n for which a solution to ¥, exists). Figures 2
and 3 help visualize patterns associated with a typical solution to ¢§% and ¢37,
respectively. For both figures, the solution is shown as a sequence of 0’s and 1’s
representing an assignment of values to variables in increasing order of index,
from left to right. Each curve shown is called a solution curve and is derived from
the solution in the figure. A solution curve rises one unit for every 1 encountered
and drops one unit for every 0 encountered when traversing the solution from
left to right. Observe that the number of peaks in each figure is [— 1 and, more
importantly, there appears to be a limited length pattern of reverse symmetry,
which we call a reflected pattern, in the vicinity of at least one of the peaks.
We conjecture the following based on observations such as those depicted in
Figures 2 and 3:
Coni W(2,0)—1 . . .
onjecture 1. For every 1, there exists a solution that contains at least
one reflected pattern of length W (2,1)/((l — 1) * 2) with the middle positioned
somewhere between W(2,1)/(l — 1) and W(2,0) « (I — 2)/(I — 1).

The tunnel is designed as a filter for consecutive variable assignment pat-
terns that are not reverse symmetric. The tunnel consists of clauses involving s
consecutive variables where, s is even and by Conjecture 1 and Observation 2,
s < [1068/10] = 106. We tried several values for s including 60, 80, 100, even
150 and all worked, but speed increased significantly with increasing s up to 150.

The first family of tunneling constraints is shown in Table 6. By using nega-
tive indices in Table 5 these constraints remain fixed as n grows. Otherwise, the
tunnel would have to move with n.

Second tunnel: From the results obtained by using the first tunnel alone, it
was observed that some small assignment patterns did not occur in solutions.
The second tunnel filters those patterns. This action is opposite to that of forcing
patterns to occur which is the objective of the first tunnel. Consequently, the first
tunnel spans a small number of variables because longer forced reverse symmetric
patterns do not exist in any solution to 1#2W76(2’6)71, but the second tunnel spans

all variables because non-solution patterns can appear anywhere in the clauses

of Pryg 7,

The second family of tunneling constraints is shown in Table 7. The maximum
value of 20 for ¢ is a compromise: the tunnels needs to be big enough to have an
impact but small enough to keep some solutions around to the end. The number
20 was determined by experiment on ¢y ¢ formulas.

10

Third tunnel: In [27] solutions to 14 ¢ are found for various values of n includ-
ing 565 and 695. The latter number implies the best known analytic lower bound
on W(2,6). Regarding the solution to 15%, re-index the assigned variables

V—-282, ..+, V0, U1, ... V282
to

V—564,V-562; --+, V0, V2, ---, U562, U564

and add unassigned variables

V—-565, V—563; --+) U1, -+, U563, U565-

Observe that this operation will not introduce any arithmetic progression among
the even indexed variables. The assignment to the even indexed variables is the
third tunnel. Search for a solution to 13 ¢! among the variables above, keeping
the values of the even indexed variables fixed. Search completes in a reasonable

time with a solution.

4% 1
11 01 100 1 o o
o 11 10 0011 01

11 01 1oo0 1 oo]
10 0011 01
oo o

11101111011010001011 11101000111101111011110001011 1101000111101111011110001011 1101000111101111011110001011101 01110100010

Fig. 3. Typical solution curve for 1/)%757. This is the largest satisfiable formula for

W (2,5). For both figures, the solution is shown as a sequence of 0’s and 1’s repre-
senting an assignment of values to variables in increasing order of index, from left to
right. The top of each curve rises one unit for every 1 encountered and drops one unit
for every 0 encountered when traversing the solution from left to right.

Remarkably, using any of the three tunnels or even combining them leads to
the same bound of 1132 for W(2,6).

11

Tunnel Clauses Subscript Range Meaning

{’l)fi7’l)i+1}7 {1_1—1'71_11'+1} 0<i< 8/2 force v_; = Vit1.

Table 6. First tunnel constraints added to ’1[1;06 initially, then retracted after “tunnel-

ing.”

Tunnel Clauses Subscript Range Filters

{vi, Vitt, Vit2t, Vit3t, Vitat, Vitst ; —n/2<i<n/2->5t 010101

{Vi, Vigt, Vig2e, Vigse, Vitat, Vigse 1<t<20 101010
{vi, Vigt, Vitat, Vigst, Vitat, Vitst, Vitet, Uittt 00110110
{Vi, Digt, Vigat, Vigst, Uitdt, Vitst, Viget, Uitrs 11001001
{Vi, Vitt, Vitat, Vit3t, Vitat, Vit5t, Vig6ts VitTt b 01101100
{Ts, Vitt, Vitot, Vit3t, Vitdt, Vitst, Vitet, Vixre} —n/2<i<mn/2—Tt 10010011
{vi, Vigt, Vitat, Vigst, Uitdt, Vitst, Viget, Uitrs 1<t<20 00111001
{Vi, Vitt, Vitat, Vit3t, Vitat, Vit5t, Vit6ts VitTt b 11000110
{Vi, Vigt, Vigat, Vigst, Uitat, Vitst, Viget, Vitrt 10011100
{Vi, Vitt, Vitat, Vit3t, Vitat, Vit5t, Vit6ts VitTt b 01100011

Table 7. Second tunnel constraints added to 1/15“’ % initially, then retracted after “tun-
neling.”

3.5 Choosing the search heuristic

Variables are always considered in the following order, regardless of assignment:
Vo, V1,V-1,V2,V-2,V3,V-3, ...

The reason is that by assigning values to middle variables first, there is a good
chance of inferences developing, symmetrically, for higher and lower indexed
variables. If, say, the lower indexed variables were assigned first, perhaps half of
the potential future inferences would not be realized early. This is particularly
important for the first tunnel where the inferences are needed to appear outside
of the tunnel variables.

3.6 Optimizations and special procedures

We were able to get the lower bound of 1132 for W (2, 6) with either tunnel using
the special solver described in Section 3.3 with the optimizations mentioned
below. However, for stock SAT solvers we needed to apply a combination of the
first and second tunnels to get a bound of 1132.

The following optimizations to the special solver were used.

1. Data structures specifically designed for very fast checking of arithmetic
progressions and inferences were used. Estimated speed up due to these
structures is about a factor of 25.

12

2. Without optimization, all nodes of the search space would have two chil-
dren representing True and False assignments to the variable of that node.
However, we generate two children only when inferences force that to be
necessary. In other words, we implement a primitive form of conflict-analysis
but do not record the result as a clause as is done in modern SAT solvers.
Estimated speed up due to this optimization is about a factor of 2.

3. The static search heuristic described in Section 3.5 accounts for an estimated
factor of 2 speed up.

4 Conclusions

We have shown how an analysis of performance curves and solution patterns of a
class of CNF formula can present insight for designing effective tunnels through
search depth of high breadth. We have chosen to experiment with formulas for
finding Van der Waerden numbers since they are a difficult class for standard
SAT solvers, apparently because clause recording (learning) is ineffective. By
tunneling, reasonable yet uninferred constraints are added just long enough to
get to a search depth that has relatively low breadth. Then the tunnel is retracted
with the hope that not all solutions have been destroyed by the tunnel. Doing so,
we found a solution to %71631 and therefore a new, significantly improved lower
bound on the number W(2,6) of 1132.

The symmetric nature of the formulas and solution played an important
part in designing effective tunnels and three tunnels were tried with the same
result. This type of symmetry is common in many formula classes that arise
from practical applications including problems of formal verification. We believe
other difficult problems will succumb to tunneling.

We believe performance curves of search breadth vs. depth, such as shown
in Figure 1, provide a “fingerprint” for tunnel effectiveness of problem classes.
We speculate the fingerprint will not change much qualitatively from one solver
to the next but cannot rule out that possibility. Assuming this, we make some
claims about the performance curve with respect to hardness as follows. If a
performance curve should reach a peak at very high depth, tunneling is unlikely
to be effective. The family of queue formulas from bounded model checking seem
to fall into this category. We speculate that early, large peaks mean delayed
inferences and force exhaustive exploration at search depths corresponding to
many unassigned variables.

Although the development of general purpose propositional solvers that work
well on all inputs is strongly desireable, at this point it is hard to imagine how this
is going to be accomplished. However, a general purpose solver can be assisted
greatly by giving special consideration to an input problem class, mining its
structure for some property that may be used to improve search. This is what
we have done with tunneling. Although we do not forsee generally applicable
principals for developing tunnels, we do believe that normal human intuition is

13

enough to uncover exploitable structure in many cases. The Van der Waerden
numbers illustrate both points.

Acknowledgements

This work was supported in part by DoD contracts MDA-904-99-C-4547, MDA-
904-02-C-1162 and a fellowship grant of the Ohio Board of Regents.

References

1. Akers, S. B.: Binary decision diagrams. IEEE Transactions on Computers C-27(6)
(1978) 509-516

2. Beame, P., and Pitassi, T.: Simplified and improved resolution lower bounds. Proc.
37th Annual Symposium on Foundations of Computer Science (1996) 274-282.

3. Beame, P., Karp, R. M., Pitassi, T., and Saks, M.: On the complexity of unsatisfi-
ability proofs for random k-CNF formulas. Proc. 30th Annual Symposium on the
Theory of Computing (1998) 561-571.

4. Ben-Sasson, E., and Wigderson, A.: Short proofs are narrow - resolution made sim-
ple. Journal of the Association for Computing Machinery 48 (2001) 149-169.

5. Brace, K. S., Rudell, R. R., and Bryant, R. E.: Efficient implementation of a BDD
package. Proc. 27th ACM/IEEE Design Automation Conf. (1990) 40-45.

6. Bryant, R. E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Comp. C-35(8) (1986) 677—691.

7. Burch, J., Clark, E., and Long, D.: Symbolic model checking with partitioned tran-
sitions relations. In: Intnl. Conf. on VLSI (Halaas, A., and Denyer, P.B., eds.), IFIP
Transactions, North-Holland (1991) 49-58,

8. Chvétal, V., and Szemerédi, E.: Many hard examples for resolution. Journal of the
Association for Computing Machinery 35 (1988) 759-768.

9. Cooke, M.: Van der Waerden numbers. Available from
http://home.comcast.net/ rm_cooke/vdw.html.

10. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving.
Communications of the Association of Computing Machinery 5 (1962) 394-397.
11. Dransfield, M.R., Liu, L., Marek, V., and Truszczynski, M.: Using Answer-Set

Programming to study van der Waerden numbers. Logic and Artificial Intelligence
Laboratory, Computer Science Department, College of Enginnering, University of
Kentucky. Available from
http://cs.engr.uky.edu/ai/vdw/.

12. Dransfield, M., and Bryant, R. E.: Using ordered binary decision diagrams to solve
highly structured satisfiability problems. Unpublished technical report CMU-CS-
1996, Carnegie Mellon University (1996).

13. Galil, Z.: On resolution with clauses of bounded size. SIAM Journal on Computing
6 (1977) 444-459.

14. Gent, I.P., and Walsh, T.: Towards an understanding of hill-climbing procedures
for SAT. Proc. 11th National Conference on Artificial Intelligence (1993) 28-33.
15. Groote, J. F.: Hiding propositional constants in BDDs. Logic Group Preprint Series

120, Utrecht University (1994).

16. Gu, J.: Efficient local search for very large-scale satisfiability problems. ACM

SIGART Bulletin 3(1) (1992) 8-12.

14

17. Gu, J., Purdom, P.W., Franco, J., and Wah, J.: Algorithms for the Satisfiabil-
ity problem: a survey. DIMACS Series on Discrete Mathematics and Theoretical
Computer Science 35 (1997) 19-151.

18. Haken, A.: The intractability of resolution. Theoretical Computer Science 39
(1985) 297-308.

19. Lee, C. Y.: Representation of switching circuits by binary-decision programs. Bell
System Technical Journal 38 (1959) 985-999.

20. McAllester, D., Selman, B., and Kautz, H.A.: Evidence for invariants in local
search. Proc. International Joint Conference on Artificial Intelligence (1997) 321—
326.

21. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2" steps. Discrete
Applied Mathematics 10 (1983) 117-133.

22. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal
of the ACM 12 (1965) 23-41.

23. Pan, G., and Vardi, M. Y.: Search vs. symbolic techniques in satisfiability solving.
Proc. Seventh International Conference on Theory and Applications of Satisfiability
Testing (SAT 2004).

24. San Miguel Aguirre, A., and Vardi, M. Y.: Random 3-SAT and BDDs: The plot
thickens further. In: Principles and Practice of Constraint Programming, (2001)
121-136.

25. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
Proc. 12th National Conference on Artificial Intelligence (1994) 337-343.

26. Somenzi, F.: Colorado University Decision Diagram package. Available from
http://vlsi.colorado.edu/"fabio/CUDD/.

27. Song, H.Y., Golomb, S.W., and Taylor, H.: Progressions in Every Two-coloration
of Z,. Journal of Combinatorial Theory, Series A 61(2) (1992) 211-221.

28. Urquhart, A.: Hard examples for resolution. Journal of the Association for Com-
puting Machinery 34 (1987) 209-219.

29. Van der Waerden, B.L.: Beweis einer Baudetschen Veermutung. Nieuw Archief
voor Wiskunde 15 (1927) 212-216.

30. Weaver, S.A., Franco, J., and Schlipf, J.S.: Extending Existential Quantification
in Conjunctions of BDDs. University of Cincinnati Technical Report.

31. Weisstein, E.W., et al.: van der Waerden Number. From MathWorld—A Wolfram
Web Resource. http://mathworld.wolfram.com/vanderWaerdenNumber.html.

