Hashing (Message Digest)
Hashing (Message Digest)
Hashing (Message Digest)

Hello There
Hashing (Message Digest)

What not
Hash Function – One way

Needed properties for cryptographically secure hash:

1. Computationally infeasible to find the message that has given the hash

2. Should be impossible for two messages to hash to the same number (and to find two messages with the same hash).

Message substitution possible otherwise
Hash Function – One way

Appearance to a cracker:

1. Looking at output, any bit should be 1 about $\frac{1}{2}$ the time 0010111...1...001110

2. Each output should have about $\frac{1}{2}$ of its bits set to 1

3. Any two outputs should be uncorrelated no matter how similar the inputs are
Hash Function – One way

Birthday Problem:
Assume a hash function H that pretty much randomly maps an integer input to an integer output. Suppose the number of output values for H is k. Pick n input integers randomly. How large should n be so that the probability that at least one pair of input integers map to the same output is $1/2$?

Answer:
Pr(some pair of inputs map to the same number) $> \frac{1}{2}$ if $n > \sqrt{2k}$

For $k=365$ days, $n = 27$
Hashing (Message Digest)

The little brown fox jumped over the lazy dog's back
Hashing (Message Digest)

The little brown fox jumped over the lazy dog's back
Hashing (Message Digest)

The little brown fox jumped over the lazy dog's back
Hashing (Message Digest)

The little brown fox jumped over the lazy dog's back
Hashing (Message Digest)

The little brown fox jumped over the lazy dog's back
Hashing (Message Digest)

The little brown fox jumped over the lazy dog's back
Hashing (Message Digest)

The little brown fox jumped over the lazy dog's back

Output
Hashing - Authentication

Client

Server
Hashing - Authentication

Client

Challenge R

Server

S
Hashing - Authentication

\[\text{Client} \xrightarrow{S} \text{Hash}(S | R) \xleftarrow{\text{Server}} S \]
Hashing - Authentication

Client
Check Hash(S | R)?

Server
Hashing - Authentication

Client

Server

Challenge P
Hashing - Authentication

\[\text{Client} \quad \text{Hash}(S \mid P) \quad \text{Server} \]
Hashing - Authentication

Client

Server

Check Hash($S \mid P$)?
Hashing - Message Authentication

Same as authentication except concatenate the message with the secret and pad.
Hashing - Message Authentication

Same as authentication except concatenate the message with the secret and pad.

Unfortunately, attacker can append a message since s/he knows Hash(S | M) and the Hash algorithm.
Hashing - Message Authenication

Same as authentication except concatenate the message with the secret and pad.

Unfortunately, attacker can append a message since s/he knows $\text{Hash}(S \mid M)$ and the Hash algorithm.

Try $\text{Hash}(M \mid S)$. But then if the digest for two messages is the same, the MAC for both messages is the same – doesn't smell right.
Hashing - Message Authentication

Same as authentication except concatenate the message with the secret and pad.

Unfortunately, attacker can append a message since s/he knows Hash(S | M) and the Hash algorithm.

Try Hash(M | S). But then if the digest for two messages is the same, the MAC for both messages is the same – doesn't smell right.

Here is what to do:

1. Concatenate secret to front of message
2. Take the hash
3. Concatenate the secret to the front of the hash
4. Take the hash

\[\text{Hash}(S \mid \text{Hash}(S \mid M)) \]
Hashing - Encryption

The little brown fox jumped over the lazy dog's back

Initialization Vector

Secret

To receiver
Hashing - Encryption

The little brown fox jumped over the lazy dog's back

Secret
The little brown fox jumped over the lazy dog's back
Hashing - Encryption

The little brown fox jumped over the lazy dog's back

Secret
Hashing - Encryption

The little brown fox jumped over the lazy dog's back