Mathematics of Cryptography

Number Theory

Modular Arithmetic:
Two numbers equivalent mod 7 if their difference is multiple of »
example: 7 and 10 are equivalent mod 3 but not mod 4

Tmod3=10mod3=1;7mod4=3,10 mod4 =2.



Mathematics of Cryptography

Modulo arithmetic — Fermat's Little Theorem
If p is prime and 0 < a < p, then @’ =1 mod p

Ex: 3V =81 =1mod>5
36D =37711171281396032013366321198900157303750656
= 1 mod 29

Look at the applet
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Every number a has either 2 square roots (Va, -Va ) or 0 square roots

Solve x2 = a mod p where p is a prime number.
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Modulo arithmetic — Fermat's Little Theorem
If p is prime and 0 < a < p, then @’ =1 mod p

Ex: 35D =81 =1mod>5
36D =37711171281396032013366321198900157303750656
= 1 mod 29

Every number a has either 2 square roots (Va, -va ) or 0 square roots
Solve x2 = a mod p where p is a prime number.

1. p mod 4 can be either 1 or 3 — suppose 1t is 3
2. then p =4t + 3 where ¢ 1s some positive integer
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Modulo arithmetic — Fermat's Little Theorem
If p is prime and 0 < a < p, then @’ =1 mod p

Ex: 35D =81 =1mod>5
36D =37711171281396032013366321198900157303750656
= 1 mod 29

Every number a has either 2 square roots (Va, -vVa ) or 0 square roots
Solve x2 = a mod p where p is a prime number.

1. p mod 4 can be either 1 or 3 — suppose 1t is 3
2. then p =4t + 3 where ¢ 1s some positive integer

3. buta® D2 =1mod p; a®*3-D2=1mod p; a?*!=1modp
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Modulo arithmetic — Fermat's Little Theorem
If p is prime and 0 < a < p, then @’ =1 mod p

Ex: 35D =81 =1mod>5
36D =37711171281396032013366321198900157303750656
= 1 mod 29

Every number a has either 2 square roots (Va, -vVa ) or 0 square roots

Solve x2 = a mod p where p is a prime number.

1. p mod 4 can be either 1 or 3 — suppose 1t is 3
2. then p =4t + 3 where ¢ 1s some positive integer

3. buta® 2 =1modp; a®*+3-D2=1mod p; a?*+1 =1modp
a’t*t2 = g mod p;
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Modulo arithmetic — Fermat's Little Theorem
If p is prime and 0 < a < p, then @’ =1 mod p

Ex: 35D =81 =1mod>5
36D =37711171281396032013366321198900157303750656
= 1 mod 29

Every number a has either 2 square roots (Va, -vVa ) or 0 square roots

Solve x2 = a mod p where p is a prime number.

1. p mod 4 can be either 1 or 3 — suppose 1t is 3
2. then p =4t + 3 where ¢ 1s some positive integer

3. buta® D2 =1mod p; a®*3-D2=1mod p; a?*!=1modp
a’tt2 = g mod p; a?t*+1) =a mod p;
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Modulo arithmetic — Fermat's Little Theorem
If p is prime and 0 < a < p, then @’ =1 mod p

Ex: 35D =81 =1mod>5
36D =37711171281396032013366321198900157303750656
= 1 mod 29

Every number a has either 2 square roots (Va, -vVa ) or 0 square roots

Solve x2 = a mod p where p is a prime number.

1. p mod 4 can be either 1 or 3 — suppose 1t is 3
2. then p =4t + 3 where ¢ 1s some positive integer

3. buta® D2 =1mod p; a®*3-D2=1mod p; a?*!=1modp
a’t2 = g mod p; a?*tD) =g mod p; (a*1)?2 =a mod p



Mathematics of Cryptography
Modulo arithmetic — Fermat's Little Theorem
If p is prime and 0 < a < p, then @’/ =1 mod p

Ex: 35D =81 =1mod 5

362D = 37711171281396032013366321198900157303750656
= 1 mod 29

Every number a has either 2 square roots (Va, -vVa ) or 0 square roots

Solve x2 = a mod p where p is a prime number.

1. p mod 4 can be either 1 or 3 — suppose it is 3

2. then p =4t + 3 where ¢ 1s some positive integer

3. buta@D2=1modp; a®*+3-1)2=1mod p; a?*! =1 modp
a’t2 = g mod p; a?t*) =g mod p; (a*1)?2=amod p

4. so, if p = 4t + 3, then find the ¢, the square root of a is at+!



Mathematics of Cryptography
Modulo arithmetic — Fermat's Little Theorem
If p is prime and 0 < a < p, then @’/ =1 mod p

Ex: 35D =81 =1mod 5

362D = 37711171281396032013366321198900157303750656
= 1 mod 29

Every number a has either 2 square roots (Va, -vVa ) or 0 square roots

Solve x2 = a mod p where p is a prime number.

1. p mod 4 can be either 1 or 3 — suppose it is 3
2. then p =4t + 3 where ¢ 1s some positive integer
3. buta@D2=1modp; a®*+3-1)2=1mod p; a?*! =1 modp
a’t2 = g mod p; a?t*) =g mod p; (a*1)?2=amod p
4. so, if p = 4t + 3, then find the ¢, the square root of a is at+!
example: p=19 =4*4+3, so t=4. Suppose a 1s 7
V7 mod 19=7>mod 19 =11 mod 19
check: 121 mod 19 =7 mod 19
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Probability that a random number p 1s prime: 1/In(p)

For 100 digit number this 1s 1/230.
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Mathematics of Cryptography
Finding a prime

Probability that a random number p 1s prime: 1/In(p)
For 100 digit number this 1s 1/230.

But how to test for being prime?

If p is prime and 0 < a < p, then ¢’/ =1 mod p

Pr(p isn't prime but @’/ = 1 mod p) is small



Mathematics of Cryptography
Finding a prime

Can always express a number p-1 as 2°c for some odd
number c.

ex: 48 =243
Here is the 2°

110101100
N

Here 1s the odd number



Mathematics of Cryptography
Finding a prime

Can always express a number p-1 as 2°c for some odd
number c.

Then can compute @’/ mod p by computing a°mod p
and squaring the result b times. If the result is not 1 then p
1S not prime.



Mathematics of Cryptography
Finding a prime

Trivial square roots of 1 modp: 1 mod p and -1 mod p

If p 1s prime, there are no nontrivial square roots of 1 mod p
Let x be a square root of 1 mod p. Then x> =1 mod p.

Or, (x-1)(x+1) = 0 mod p.

But x-1 and x+1 are divisible by prime p. Hence, the
product cannot be divisible by p. Therefore x does not exist.



Mathematics of Cryptography
Finding a prime
Consider p-1 =2 again. If p is prime then a° =1 mod p

r
or for some r < b, a° “ =-1 mod p.



Mathematics of Cryptography
Finding a prime

Choose a random odd integer p to test.
Calculate b = # times 2 divides p-1.

Calculate m such thatp = 1 + 2" m.

Choose a random integer a such that 0 < a < p.

If " =1modp Il " = -1 mod p, for some 0 <j< b-1,
then p passes the test. A prime will pass the test for all a.



Mathematics of Cryptography
Finding a prime

Choose a random odd integer p to test.
Calculate b = # times 2 divides p-1.

Calculate m such thatp = 1 + 2" m.

Choose a random integer a such that 0 < a < p.

If @" =1modp Il @® =-1modp, for some 0 <j< b-1,
then p passes the test. A prime will pass the test for all a.

A non prime number passes the test for at most 1/4 of all
possible a.

So, repeat N times and probability of error is (1/4)" .

Look at the applet



Mathematics of Cryptography
Finding a prime — importance to RSA

Choose e first, then find p and g so (p-1) and (g-1) are relatively
prime to e

RSA 1s no less secure if e 1s always the same and small

Popular values for e are 3 and 65537

For e = 3, though, must pad message or else ciphertext = plaintext
Choose p = 2 mod 3 so p-1 =1 mod 3 so p 1s relatively prime to e

So, choose random odd number, multiply by 3 and add 2,
then test for primality
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Number Theory

Modular Arithmetic:
Two numbers equivalent mod 7 if their difference is multiple of »
example: 7 and 10 are equivalent mod 3 but not mod 4

Tmod3=10mod3=1;7mod4=3,10 mod4 =2.

Greatest Common Divisor:
Largest integer that evenly divides two given numbers
ocd(3,7)=1; gcd(294, 385) =7,
294 =42x7; 385 =155x%7;
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Greatest Common Divisor:
Largest integer that evenly divides two given numbers
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Given integers m, n, suppose integer r 1s the smallest for which
there exist integers u, v such that » > 0 and
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then 7 1s the greatest common divisor of m and .



Mathematics of Cryptography

Number Theory

Modular Arithmetic:
Two numbers equivalent mod 7 if their difference is multiple of »
example: 7 and 10 are equivalent mod 3 but not mod 4

Tmod3=10mod3=1;7mod4=3,10 mod4 =2.

Greatest Common Divisor:
Largest integer that evenly divides two given numbers
ocd(3,7)=1; gcd(294, 385) =7,
294 =42x7; 385 =155x%7;

Given integers m, n, suppose integer r 1s the smallest for which
there exist integers u, v such that » > 0 and

UxM T Vxn =7r
then 7 1s the greatest common divisor of m and .

If p > r 1s common divisor then uxm/p + vxn/p = an integer = r/p < 1



Greatest Common Divisor

385
294



Greatest Common Divisor

385
—— = 1R 91 91 = 1x385 - 1x294
294



Greatest Common Divisor

385
ﬁ = 1 R91 In other words we need the gcd of 91 + 294 and 294



Greatest Common Divisor

385
—— = 1 R 91 In other words we need the gcd of 91 + 294 and 294

294
But this 1s the same gcd as for 91 and 294!
because (91+294)/a —294/a=91/a
which must be an integer.



Greatest Common Divisor

385
294 91 = 1x385 - 1x294

294
91



Greatest Common Divisor

385
294 91 = 1x385 - 1x294

294
= 3R21 21 =294-3(385-294) =-3x385 +4x294

@ ‘
ek



Greatest Common Divisor

385
294

294
91

91
21

91 = 1x385 - 1x294

21 =-3x385 +4x294



Greatest Common Divisor

385

294 91 = 1x385 - 1x294
294

91 21 =-3x385 +4x294
91

—— = 4R 7 =1%x385 -1%x294 - 4(-3%x385 + 4x294) = 13 X385 - 17x294
21



Greatest Common Divisor
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294

294
91

91
21 7 =1x385 -1x294 - 4(-3x385 + 4x294) = 13x385 - 17x294

21



Greatest Common Divisor

385
294

294
91

91
21

21

7 =1x385 -1x294 - 4(-3x385 + 4x294) = 13x385 - 17x294



Greatest Common Divisor

385
294

294
91

91
21 7 =1x385-1x294 - 4(-3x385 + 4x294) = 13X385 - 17x294

21

So, the gcd of 385 and 294 is 7/
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Find an inverse of m mod »n. That 1s, a number « such that
uxm = 1 mod n.

In other words, find u such that uxm + vxn = 1 for some v.
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In other words, find u such that uxm + vxn = 1 for some v.

Apply previous algorithm (gcd(m,n)) to get u, v but only 1f
m and n are relatively prime.

Example:
Inverse of 89 mod 42:
89 - 2x42 =5



Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of m mod »n. That 1s, a number « such that
uxm = 1 mod n.

In other words, find u such that uxm + vxn = 1 for some v.

Apply previous algorithm (gcd(m,n)) to get u, v but only 1f
m and n are relatively prime.

Example:
Inverse of 89 mod 42:
89 - 2x42 = 5 =1x89 - 2x42
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Finding Multiplicative Inverses

Find an inverse of m mod »n. That 1s, a number « such that
uxm = 1 mod n.

In other words, find u such that uxm + vxn = 1 for some v.

Apply previous algorithm (gcd(m,n)) to get u, v but only 1f
m and n are relatively prime.

Example:
Inverse of 89 mod 42:
89 - 2x42 = 5 =1x89 - 2x42

42 - 8x5=12



Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of m mod »n. That 1s, a number « such that
uxm = 1 mod n.

In other words, find u such that uxm + vxn = 1 for some v.

Apply previous algorithm (gcd(m,n)) to get u, v but only 1f
m and n are relatively prime.

Example:
Inverse of 89 mod 42:
89 - 2x42 = 5 =1x89 - 2x42

42 - 8x5 = 2 =1x42 - 8(1x89 - 2x42) = -8x89 + 17x42



Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of m mod »n. That 1s, a number « such that
uxm = 1 mod n.

In other words, find u such that uxm + vxn = 1 for some v.

Apply previous algorithm (gcd(m,n)) to get u, v but only 1f
m and n are relatively prime.

Example:
Inverse of 89 mod 42:
89 - 2x42 = 5 =1x89 - 2x42

42 - 8x5 = 2 =1x42 - 8(1x89 - 2x42) = -8x89 + 17x42
5-2x2=1



Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of m mod »n. That 1s, a number « such that
uxm = 1 mod n.

In other words, find u such that uxm + vxn = 1 for some v.

Apply previous algorithm (gcd(m,n)) to get u, v but only 1f
m and n are relatively prime.

Example:
Inverse of 89 mod 42:
89 - 2x42 = 5 =1x89 - 2x42

42 - 8x5 = 2 =1x42 - 8(1x89 - 2x42) = -8x89 + 17x42
5-2x2 = | =1x89 -2x42 - 2(-8x89 + 17x42) = 17x89 - 36x42



Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of m mod »n. That 1s, a number « such that
uxm = 1 mod n.

In other words, find u such that uxm + vxn = 1 for some v.

Apply previous algorithm (gcd(m,n)) to get u, v but only 1f
m and n are relatively prime.

Example:
Inverse of 89 mod 42:
89 - 2x42 = 5 =1x89 - 2x42

42 - 8x5 = 2 =1x42 - 8(1x89 - 2x42) = -8x89 + 17x42
5-2x2 = | =1x89 -2x42 - 2(-8x89 + 17x42) = 17x89 - 36x42

Conclusion: 17 1s the inverse of 89 mod 42! Look at the applet



Mathematics of Cryptography

Chinese Remainder Theorem

There are certain things whose number 1s unknown. Repeatedly
divided by 3, the remainder 1s 2; by 5 the remainder is 3; and by
7 the remainder 1s 2. What will be the number?



Mathematics of Cryptography

Chinese Remainder Theorem

There are certain things whose number 1s unknown. Repeatedly
divided by 3, the remainder 1s 2; by 5 the remainder is 3; and by
7 the remainder 1s 2. What will be the number?

Application: An army general about 2000 years ago sent by
messenger a note to the emperor telling how many troops
he had. But the number was encrypted in the following way:
divic 1ng 602 by 3 glves a remainder of 2
dividing 602 by 5 gives a remainder of 2
C
C

lividing 602 by 7 gives a remainder of 0
lividing 602 by 11 gives a remainder of 8

So the message 1s: 2,2,0,8

It turns out that by the Chinese Remainder Theorem (CRT)
it 1s possible to uniquely determine the number of troops
provided all the divisions were by relatively prime numbers.



Mathematics of Cryptography

Chinese Remainder Theorem

There are certain things whose number 1s unknown. Repeatedly
divided by 3, the remainder 1s 2; by 5 the remainder is 3; and by
7 the remainder 1s 2. What will be the number?

Application:
An old Chinese woman on the way to the market came upon a
horse and rider. The horse stepped on her basket and crushed the
eggs in her basket. The rider offered to pay for the broken eggs
and asked how many eggs were 1n the basket. She did not
remember the exact number, but when she had taken them out
two at a time, there was one egg left. The same happened when
she picked them out three, four, five, and six at a time, but when
she took them seven at a time they came out even. What 1s the
smallest number of eggs she could have had?



Mathematics of Cryptography

Chinese Remainder Theorem

If the prime factorization of 7 1s n,xn,x...xn, then the system of

equations:
xmodn]=a1 x =a; mod n,
x mod n,=a, X =a,mod n,
xmodn3=a3 x =a;mod n,
xmodnk=ak x=akmodnk

has a unique solution x given any a,, a,, ..., a, where x < n.



Mathematics of Cryptography
Chinese Remainder Theorem
Why?
Definent= n,n, ..n_m.;..n,

This means, for each 1 < i <k, there 1s an 7, and s, such that

—
ron.ts.n |

and r; and s, can be found using the gecd algorithm.

Since nt contains all # as factors except for n; it 1s evenly
divisible by all but #_.

Then s, n! =0 mod n, foralli # j and

S, nt =1 mod n,



Mathematics of Cryptography

Chinese Remainder Theorem
Why?
The solution 1s

k
— I
xX=), aisl.n_mod nyn, .. n,
i=1

Therefore, as a check

xmoé.nl = a1><1+a2 ><O+a3 x0 + ...
xmodn, = a1><0+a2><1+a3 x0 + ...

xmodn, = a]><0+a2 ><O+a3><1+...

xmodnk = a]><0+a2><0+a3><0+...

+ak><0=a]
+ak><0=a2
+ak><0=a3

+ak><1=ak



Mathematics of Cryptography

Chinese Remainder Theorem

xmodn1=a1 x=a;,modn,
x mod n,=a, X = a,mod n,
x mod n,=da; X = a;mod n;
x mod n,=a, X = akmod n,

has a unique solution x given any a;, a,, ..., @y wherex <nn ... n,



Mathematics of Cryptography

Chinese Remainder Theorem

xmodn1=a1 x=a;,modn,
x mod n,=a, X = a,mod n,
x mod n,=da; X = a;mod n;
x mod n,=a, X = akmod n,

Return to the original problem:
divide x by 3 and get aremainderof2 a,=2 n;,=3

divide x by 5 and get a remainderot3 a,=3 n,=35

divide x by 7 and get a remainder of 2 a;,=2 n;=7
What is the value of x that 1s no greater than 3x5x7?
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Chinese Remainder Theorem

xmodn1=a1 x=a;,modn,
x mod n,=a, X = a,mod n,
x mod n,=da; X = a;mod n;
x mod n,=a, X = akmod n,

Return to the original problem:
divide x by 3 and get aremainderof2 a,=2 n;,=3

divide x by 5 and get a remainderot3 a,=3 n,=35

divide x by 7 and get a remainder of 2 a;,=2 n;=7
What is the value of x that 1s no greater than 3x5x7?
Inverses of: 5x7 mod 3=2 3x7 mod 5=1 3x5 mod 7=1
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Chinese Remainder Theorem

xmodn1=a1 x=a;,modn,
x mod n,=a, X = a,mod n,
x mod n,=da; X = a;mod n;
x mod n,=a, X = akmod n,

Return to the original problem:
divide x by 3 and get aremainderof2 a,=2 n,=3

divide x by 5 and get aremainderot 3 a,=3 n,=35

divide x by 7 and get a remainderof 2 a,=2 n;=7

What is the value of x that 1s no greater than 3x5x7?

Inverses of: 5x7 mod 3=2 3x7 mod 5=1 3x5 mod 7=1

X =2x35x2 + 3x21x1 + 2x15x1 mod 3x5x7 =23 (128, 233, ...)
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Chinese Remainder Theorem

Second problem:
x=1mod2 = x=2xt+1
x=1mod3 = x=3xp+1
x=1mod4 = x=4xr+1
x=1mod5= x=5xs+1
x=1mod6= x=6xg+1
x=0mod7 = x=T7xw




Mathematics of Cryptography

Chinese Remainder Theorem

Second problem: Whoops! not a prime factorization
x=1mod2 = x=2xt+1

x=1mod3 = x=3xp+1
x=1mod4 = x=4xr+1
x=1mod5= x=5xs+1
x=1mod6= x=6xg+1
x=0mod7 = x=Txw

SO, 2xt = 3xp = 4xr = 3Ixs = b6xq

from last two g = vx5 and s = vx6

but » = 3xq/2 so g = vx2x5 and s = vx2x6 making r = vx3x5
also p = 2xq = vx4 x5

and t = 2xr = vx30

SOX=60xv+ 1;n="Txw

Txw = 60xv + 1
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Chinese Remainder Theorem
Immediate consequence:

Suppose everyone's RSA public key e part 1s 3. Consider
the same message sent to three people. These are:

c[1] = m> mod n[1]
c[2] = m3 mod n[2]
c[3] = m> mod n[3]

By the Chinese Remainder Theorem

One can compute m> mod n[1]xn[2]xn[3]
Since m is smaller than any of the n[i], m? is known
and taking the cube root finds m.



Mathematics of Cryptography
Z*n

All numbers less than z that are relatively prime with n
Examples: Z*10=1{1,3,7,9 }; Z*15=1{1,2,4,7,8, 11,13, 14 }

If numbers a, b are members of Z*n then so 1s axb mod .

Examples: 4x11 mod 15 =44 mod 15 = 14;
13x14 mod 15 =182 mod 15 = 2.
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Since a and b are relatively prime to n there must be integers s.t.
uxa +vxn=1and wxb+xxn=1.



Mathematics of Cryptography
Z*n

All numbers less than z that are relatively prime with n
Examples: Z*10=1{1,3,7,9 }; Z*15=1{1,2,4,7,8, 11,13, 14 }

If numbers a, b are members of Z*n then so 1s axb mod .

Examples: 4x11 mod 15 =44 mod 15 = 14;
13x14 mod 15 =182 mod 15 = 2.

Why?
Since a and b are relatively prime to n there must be integers s.t.
uxa +vxn=1and wxb+xxn=1.

Multiply both equations:
(uxw)xaxb + (uxxxa + vxwxb + xxvxn)xn = 1
Hence axb 1s relatively prime to n.



Mathematics of Cryptography

Euler's Totient Function:
Defined: ¢(n) 1s number of elements in Z*n.
Example: $(7) =6 ({1,2,3,4,5,6}) ; $(10) =4 ({1,3,7,9})

Suppose n = pxq and p and g are relatively prime
Example: $(70):
{ 1,3,9,11,13,17, 19, 23,27,29, 31, 33,37, 39,41, 43, 47,
51,53,57,59, 61, 67, 69}

$(70) = d(7)$(10) = 24.
Why?
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Euler's Totient Function:

Defined: ¢(n) 1s number of elements in Z*n.
Example: $(7) =6 ({1,2,3,4,5,6}) ; $(10) =4 ({1,3,7,9})

Suppose n = pxq and p and g are relatively prime
Example: $(70):
{ 1,3,9,11,13,17, 19, 23,27,29, 31, 33,37, 39,41, 43, 47,
51,53,57,59, 61, 67, 69}

$(70) = d(7)P(10) = 24.

Why? By the Chinese Remainder Theorem there is a 1-1
correspondence between a number m and

m =mmodp 1=29mod7 4=39mod7

p

m =mmodg 9=29mod 10 9=39mod 10

q
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Euler's Totient Function:

Defined: ¢(n) 1s number of elements in Z*n.
Example: $(7) =6 ({1,2,3,4,5,6}) ; $(10) =4 ({1,3,7,9})

Suppose n = pxq and p and g are relatively prime
Example: $(70):
{ 1,3,9,11,13,17, 19, 23,27,29, 31, 33,37, 39,41, 43, 47,
51,53,57,59, 61, 67, 69}

$(70) = d(7)P(10) = 24.

Why? By the Chinese Remainder Theorem there is a 1-1
correspondence between a number m and

mpzmmodp

mq=mm0dq

If m 1s relatively prime to pg, then there are integers u,v, such that
um + vpg = 1.
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Euler's Totient Function:
Substituting m = m -+ kp gives
um, + (uk +vg)p =1
som 1s relatively prime to p. Same for m and gq.
Therefore, m 1n Z*pg means m 1s in Z*p and m is in Z*q.

Why? By the Chinese Remainder Theorem there 1s a 1-1
correspondence between a number m and

mp=mm0dp

mq=mm0dq

If m 1s relatively prime to pg, then there are integers u,v, such that
um + vpg = 1.



Mathematics of Cryptography

Euler's Totient Function:
Substituting m = m -+ kp gives
um, + (uk +vg)p =1
som 1s relatively prime to p. Same for m and gq.
Therefore, m 1n Z*pg means m 1s in Z*p and m is in Z*q.

Similar tricks can be used to show that m in Z*q and m in

Z*p 1mply m 1n Z*pq.

Why? By the Chinese Remainder Theorem there is a 1-1
correspondence between a number m and

mp=mm0dp

mq=mm0dq

If m 1s relatively prime to pg, then there are integers u,v, such that
um + vpg = 1.



Mathematics of Cryptography

Euler's Theorem:

For all a in Z*n, a(b(n) = 1 mod .
Why?

By example: suppose n = 10, a = 3. Multiply all elements of
Z*n=1{1,3,7,9} togetx=189. Butx mod 10 =9 which
1s an element of Z*n. The inverse of x 1s 9.



Mathematics of Cryptography

Euler's Theorem:

For all a in Z*n, a(b(n) = 1 mod .
Why?

By example: suppose n = 10, a = 3. Multiply all elements of
Z*n=1{1,3,7,9} togetx=189. Butx mod 10 =9 which
1s an element of Z*n. The inverse of x 1s 9.

Multiply all elements of Z*n by 3 and multiply all those numbers:
(3x1)x(3 x3)x(3 xT)x(3 x9) = 3*"xx
But 3x1 =3, 3x3=9,3x7=1,3x9=7 (all mod 10)
b))
Hence a = "*xx =x mod n.

So, a(b(n) =1 mod n
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Euler's Theorem:
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For all a in Z*n, and any non-neg int &, a7 2 4 mod n.

Why?
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Euler's Theorem:

For all a in Z*n, and any non-neg int &, a7 2 4 mod n.

(kxd(ny+1) _ )k
a =@ )

Why? Xq = 1k><a =a
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For all a in Z*n, and any non-neg int k, a a mod n.
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a = (a

Why? ) Xa —1><a—a
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For all @ and any non-neg int £, a7 = 4 mod n,

if n = pXxgq, p and g are prime then $(n) = (p-1)x(g-1)
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Euler's Theorem:

(kxdp(n)+1) _

For all a in Z*n, and any non-neg int k, a a mod n.

(kxp(ny]) _ - db(n)k
a = (a

Why? ) Xa —1><a—a

. Jox
For all @ and any non-neg int £, a7 = 4 mod n,

if n = pXxgq, p and g are prime then $(n) = (p-1)x(g-1)

Why? Only interesting case: a 1s a multiple of p or g.
Suppose a 1s a multiple of g.

Since a 1s relatively prime to p, ™ =1 mod p.

Since d(n)=dp(p)*Pp(g), (mod p)

k X X k Jo %
LD _ O )
ke % 1
a=0 mod g so a( bt 0 =a mod g.
ke ¥
By CRT & "™ = 4 mod n.



Mathematics of Cryptography
RSA:
n=p*q
$(n) = (p-1)*(g-1)
e — relatively prime to ¢(n)

d — such that e*d-1 divisible by ¢(n)
hence (e*d-1) / $(n) = k, a positive integer

so exd = k*dp(n) + 1

therefore m* =m = m mod n



