Mathematics of Cryptography

Number Theory

Modular Arithmetic:
Two numbers equivalent mod n if their difference is multiple of n
example: 7 and 10 are equivalent mod 3 but not mod 4
7 mod 3 \equiv 10 mod 3 = 1; 7 mod 4 = 3, 10 mod 4 = 2.
Number Theory

Modular Arithmetic:
Two numbers equivalent mod n if their difference is multiple of n
example: 7 and 10 are equivalent mod 3 but not mod 4
$7 \mod 3 \equiv 10 \mod 3 = 1$; $7 \mod 4 = 3$, $10 \mod 4 = 2$.

Greatest Common Divisor:
Largest integer that evenly divides two given numbers
$\gcd(3, 7) = 1$; $\gcd(294, 385) = 7$;
$294 = 42 \times 7$; $385 = 55 \times 7$.
Mathematics of Cryptography

Number Theory

Modular Arithmetic:
Two numbers equivalent mod n if their difference is multiple of n
equivalentexample: 7 and 10 are equivalent mod 3 but not mod 4

$7 \mod 3 \equiv 10 \mod 3 = 1; 7 \mod 4 = 3, 10 \mod 4 = 2.$

Greatest Common Divisor:
Largest integer that evenly divides two given numbers

gcd(3, 7) = 1; gcd(294, 385) = 7;

$294 = 42 \times 7; 385 = 55 \times 7$;

Given integers m, n, suppose positive integer r is the smallest
for which there exist integers u, v such that

$u \times m + v \times n = r$

then r is the greatest common divisor of m and n.
Number Theory

Modular Arithmetic:
Two numbers equivalent mod n if their difference is multiple of n
example: 7 and 10 are equivalent mod 3 but not mod 4
$7 \mod 3 \equiv 10 \mod 3 = 1$; $7 \mod 4 = 3$, $10 \mod 4 = 2$.

Greatest Common Divisor:
Largest integer that evenly divides two given numbers
$\gcd(3, 7) = 1$; $\gcd(294, 385) = 7$;
$294 = 42 \times 7$; $385 = 55 \times 7$;

Given integers m, n, suppose positive integer r is the smallest for which there exist integers u, v such that
$u \times m + v \times n = r$
then r is the greatest common divisor of m and n.

If $p > r$ is common divisor then $u \times m/p + v \times n/p = \text{an integer} = r/p < 1$
Greatest Common Divisor

385
294
Greatest Common Divisor

\[
\frac{385}{294} = 1 \text{ R } 91 \\
91 = 1 \times 385 - 1 \times 294
\]
Greatest Common Divisor

\[
\frac{385}{294} = 1 \text{ R } 91 \quad \text{In other words we need the gcd of } 91 + 294 \text{ and } 294
\]
Greatest Common Divisor

\[
\frac{385}{294} = 1 \text{ R } 91
\]

In other words we need the gcd of \(91 + 294 \) and \(294 \)

But this is the same gcd as for \(91 \) and \(294 \)!

because \(\frac{(91+294)}{a} - \frac{294}{a} = \frac{91}{a} \)

which must be an integer.
Greatest Common Divisor

385

294 \quad 91 = 1 \times 385 - 1 \times 294

294

91
Greatest Common Divisor

385
294
91 = 1\times 385 - 1\times 294

\[
\begin{array}{c}
294 \\
\underline{294} \\
91 \\
\end{array}
\]

= 3 \text{ R } 21
21 = 294 - 3(385 - 294) = -3\times 385 + 4\times 294
Greatest Common Divisor

385
294 \[91 = 1 \times 385 - 1 \times 294 \]
294
91 \[21 = -3 \times 385 + 4 \times 294 \]
91
21
Greatest Common Divisor

385
294 \quad 91 = 1 \times 385 - 1 \times 294

294
91 \quad 21 = -3 \times 385 + 4 \times 294

91
21 \quad = 4 \text{ R } 7

7 = 1 \times 385 - 1 \times 294 - 4(-3 \times 385 + 4 \times 294) = 13 \times 385 - 17 \times 294
Greatest Common Divisor

385
294

294
91

91
21

21
7

7 = 1\times385 - 1\times294 - 4(-3\times385 + 4\times294) = 13\times385 - 17\times294
Greatest Common Divisor

\[
\begin{align*}
385 & \quad 294 \\
294 & \quad 91 \\
91 & \quad 21 \\
21 & \quad 7 = 1 \times 385 - 1 \times 294 - 4(-3 \times 385 + 4 \times 294) = 13 \times 385 - 17 \times 294 \\
21 & \quad 3 \text{ R } 0
\end{align*}
\]
Greatest Common Divisor

385
294
294
91
91
21
7

7 = 1\times385 - 1\times294 - 4(-3\times385 + 4\times294) = 13\times385 - 17\times294

So, the gcd of 385 and 294 is 7
Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of \(m \mod n \). That is, a number \(u \) such that \(u \times m = 1 \mod n \).
Finding Multiplicative Inverses

Find an inverse of $m \mod n$. That is, a number u such that $u \times m = 1 \mod n$.

In other words, find u such that $u \times m + v \times n = 1$ for some v.
Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of $m \mod n$. That is, a number u such that $u \times m = 1 \mod n$.

In other words, find u such that $u \times m + v \times n = 1$ for some v.

Apply previous algorithm ($\text{gcd}(m,n)$) to get u, v but only if m and n are relatively prime.
Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of \(m \mod n \). That is, a number \(u \) such that \(u \times m = 1 \mod n \).

In other words, find \(u \) such that \(u \times m + v \times n = 1 \) for some \(v \).

Apply previous algorithm (\(\gcd(m,n) \)) to get \(u, v \) but only if \(m \) and \(n \) are relatively prime.

Example:

Inverse of \(89 \mod 42 \):
Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of $m \mod n$. That is, a number u such that $u \times m = 1 \mod n$.

In other words, find u such that $u \times m + v \times n = 1$ for some v.

Apply previous algorithm ($\gcd(m,n)$) to get u, v but only if m and n are relatively prime.

Example:

Inverse of $89 \mod 42$:

$89 - 2 \times 42 = 5$
Finding Multiplicative Inverses

Find an inverse of $m \mod n$. That is, a number u such that $u \times m = 1 \mod n$.

In other words, find u such that $u \times m + v \times n = 1$ for some v.

Apply previous algorithm ($\gcd(m,n)$) to get u, v but only if m and n are relatively prime.

Example:

Inverse of $89 \mod 42$:

$89 - 2 \times 42 \Rightarrow 5 = 1 \times 89 - 2 \times 42$
Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of $m \mod n$. That is, a number u such that $u \times m = 1 \mod n$.

In other words, find u such that $u \times m + v \times n = 1$ for some v.

Apply previous algorithm ($\gcd(m,n)$) to get u, v but only if m and n are relatively prime.

Example:

Inverse of $89 \mod 42$:

$89 - 2 \times 42 \Rightarrow 5 = 1 \times 89 - 2 \times 42$

$42 - 8 \times 5 = 2$
Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of \(m \mod n \). That is, a number \(u \) such that \(u \times m = 1 \mod n \).

In other words, find \(u \) such that \(u \times m + v \times n = 1 \) for some \(v \).

Apply previous algorithm (gcd(\(m, n \))) to get \(u, v \) but only if \(m \) and \(n \) are relatively prime.

Example:

Inverse of 89 mod 42:

89 - 2 \times 42 \rightarrow 5 = 1 \times 89 - 2 \times 42

42 - 8 \times 5 \rightarrow 2 = 1 \times 42 - 8(1 \times 89 - 2 \times 42) = -8 \times 89 + 17 \times 42
Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of \(m \mod n \). That is, a number \(u \) such that \(u \times m = 1 \mod n \).

In other words, find \(u \) such that \(u \times m + v \times n = 1 \) for some \(v \).

Apply previous algorithm (\(\gcd(m,n) \)) to get \(u, v \) but only if \(m \) and \(n \) are relatively prime.

Example:

Inverse of 89 mod 42:

\[
egin{align*}
89 - 2 \times 42 & \rightarrow 5 = 1 \times 89 - 2 \times 42 \\
42 - 8 \times 5 & \rightarrow 2 = 1 \times 42 - 8(1 \times 89 - 2 \times 42) = -8 \times 89 + 17 \times 42 \\
5 - 2 \times 2 & = 1
\end{align*}
\]
Mathematics of Cryptography

Finding Multiplicative Inverses

Find an inverse of \(m \mod n \). That is, a number \(u \) such that \(u \times m = 1 \mod n \).

In other words, find \(u \) such that \(u \times m + v \times n = 1 \) for some \(v \).

Apply previous algorithm (gcd\((m,n)\)) to get \(u, v \) but only if \(m \) and \(n \) are relatively prime.

Example:

Inverse of \(89 \mod 42 \):

\[
89 - 2 \times 42 \rightarrow 5 = 1 \times 89 - 2 \times 42
\]

\[
42 - 8 \times 5 \rightarrow 2 = 1 \times 42 - 8(1 \times 89 - 2 \times 42) = -8 \times 89 + 17 \times 42
\]

\[
5 - 2 \times 2 \rightarrow 1 = 1 \times 89 - 2 \times 42 - 2(-8 \times 89 + 17 \times 42) = 17 \times 89 - 36 \times 42
\]
Finding Multiplicative Inverses

Find an inverse of \(m \mod n \). That is, a number \(u \) such that \(u \times m = 1 \mod n \).

In other words, find \(u \) such that \(u \times m + v \times n = 1 \) for some \(v \).

Apply previous algorithm (\(\text{gcd}(m,n) \)) to get \(u, v \) but only if \(m \) and \(n \) are relatively prime.

Example:

Inverse of 89 mod 42:

\[
\begin{align*}
89 - 2 \times 42 &\Rightarrow 5 = 1 \times 89 - 2 \times 42 \\
42 - 8 \times 5 &\Rightarrow 2 = 1 \times 42 - 8(1 \times 89 - 2 \times 42) = -8 \times 89 + 17 \times 42 \\
5 - 2 \times 2 &\Rightarrow 1 = 1 \times 89 - 2 \times 42 - 2(-8 \times 89 + 17 \times 42) = 17 \times 89 - 36 \times 42 \\
\end{align*}
\]

Conclusion: 17 is the inverse of 89 mod 42!

Look at the applet
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If p is prime and $0 < a < p$, then $a^{p-1} = 1 \mod p$

$Ex: \quad 3^{(5-1)} = 81 = 1 \mod 5$
$36^{(29-1)} = 37711171281396032013366321198900157303750656$
$\quad = 1 \mod 29$

Look at the applet
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If p is prime and $0 < a < p$, then $a^{p-1} = 1 \mod p$

Ex: $3^{(5-1)} = 81 = 1 \mod 5$

$36^{(29-1)} = 37711171281396032013366321198900157303750656$

$= 1 \mod 29$

Every number a has either 2 square roots (\sqrt{a}, $-\sqrt{a}$) or 0 square roots

Solve $x^2 = a \mod p$ where p is a prime number.
If p is prime and $0 < a < p$, then $a^{p-1} = 1 \mod p$

Ex: $3^{(5-1)} = 81 = 1 \mod 5$

$36^{(29-1)} = 37711171281396032013366321198900157303750656$

$= 1 \mod 29$

Every number a has either 2 square roots (\sqrt{a}, $-\sqrt{a}$) or 0 square roots

Solve $x^2 = a \mod p$ where p is a prime number.

1. $p \mod 4$ can be either 1 or 3 – suppose it is 3
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If \(p \) is prime and \(0 < a < p \), then \(a^{p-1} = 1 \mod p \)

\[\text{Ex: } 3^{(5-1)} = 81 = 1 \mod 5 \]
\[36^{(29-1)} = 37711171281396032013366321198900157303750656 \]
\[= 1 \mod 29 \]

Every number \(a \) has either 2 square roots (\(\sqrt{a} \), \(-\sqrt{a} \)) or 0 square roots.

Solve \(x^2 = a \mod p \) where \(p \) is a prime number.

1. \(p \mod 4 \) can be either 1 or 3 – suppose it is 3
2. then \(p = 4t + 3 \) where \(t \) is some positive integer
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If p is prime and $0 < a < p$, then $a^{p-1} = 1 \mod p$

Ex: $3^{(5-1)} = 81 = 1 \mod 5$
$36^{(29-1)} = 37711171281396032013366321198900157303750656$
$= 1 \mod 29$

Every number a has either 2 square roots (\sqrt{a}, $-\sqrt{a}$) or 0 square roots.

Solve $x^2 = a \mod p$ where p is a prime number.

1. $p \mod 4$ can be either 1 or 3 – suppose it is 3
2. then $p = 4t + 3$ where t is some positive integer
3. but $a^{(p-1)/2} = 1 \mod p$;
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If p is prime and $0 < a < p$, then $a^{p-1} = 1 \mod p$

Ex: $3^{(5-1)} = 81 = 1 \mod 5$

$36^{(29-1)} = 37711171281396032013366321198900157303750656$

$= 1 \mod 29$

Every number a has either 2 square roots (\sqrt{a}, $-\sqrt{a}$) or 0 square roots

Solve $x^2 = a \mod p$ where p is a prime number.

1. $p \mod 4$ can be either 1 or 3 – suppose it is 3
2. then $p = 4t + 3$ where t is some positive integer
3. but $a^{(p-1)/2} = 1 \mod p$; $a^{(4t+3-1)/2} = 1 \mod p$;
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If p is prime and $0 < a < p$, then $a^{p-1} \equiv 1 \mod p$

Ex: $3^{(5-1)} = 81 = 1 \mod 5$

$36^{(29-1)} = 37711171281396032013366321198900157303750656$

$= 1 \mod 29$

Every number a has either 2 square roots ($\sqrt{a}, -\sqrt{a}$) or 0 square roots

Solve $x^2 = a \mod p$ where p is a prime number.

1. $p \mod 4$ can be either 1 or 3 – suppose it is 3
2. then $p = 4t + 3$ where t is some positive integer
3. but $a^{(p-1)/2} = 1 \mod p$; $a^{(4t+3-1)/2} = 1 \mod p$; $a^{2t+1} = 1 \mod p$
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If \(p \) is prime and \(0 < a < p \), then \(a^{p-1} \equiv 1 \mod p \)

\[Ex: \ 3^{(5-1)} = 81 = 1 \mod 5 \]
\[36^{(29-1)} = 37711171281396032013366321198900157303750656 \]
\[= 1 \mod 29 \]

Every number \(a \) has either 2 square roots (\(\sqrt{a}, -\sqrt{a} \)) or 0 square roots

Solve \(x^2 = a \mod p \) where \(p \) is a prime number.

1. \(p \mod 4 \) can be either 1 or 3 – suppose it is 3
2. then \(p = 4t + 3 \) where \(t \) is some positive integer
3. but \(a^{(p-1)/2} = 1 \mod p \); \(a^{(4t+3-1)/2} = 1 \mod p \); \(a^{2t+1} = 1 \mod p \)
\[a^{2t+2} = a \mod p; \]
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If \(p \) is prime and \(0 < a < p \), then \(a^{p-1} = 1 \mod p \)

Ex: \(3^{(5-1)} = 81 = 1 \mod 5 \)
\(36^{(29-1)} = 37711171281396032013366321198900157303750656 \)
\(= 1 \mod 29 \)

Every number \(a \) has either 2 square roots (\(\sqrt{a} \), -\(\sqrt{a} \)) or 0 square roots

Solve \(x^2 = a \mod p \) where \(p \) is a prime number.

1. \(p \mod 4 \) can be either 1 or 3 – suppose it is 3
2. then \(p = 4t + 3 \) where \(t \) is some positive integer
3. but \(a^{(p-1)/2} = 1 \mod p; \ a^{(4t+3-1)/2} = 1 \mod p; \ a^{2t+1} = 1 \mod p \)
\(a^{2t+2} = a \mod p; \ a^{2(t+1)} = a \mod p; \)
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If \(p \) is prime and \(0 < a < p \), then \(a^{p-1} = 1 \mod p \)

Ex: \(3^{(5-1)} = 81 = 1 \mod 5 \)

\(36^{(29-1)} = 37711171281396032013366321198900157303750656 \)

\(= 1 \mod 29 \)

Every number \(a \) has either 2 square roots (\(\sqrt{a}, -\sqrt{a} \)) or 0 square roots

Solve \(x^2 = a \mod p \) where \(p \) is a prime number.

1. \(p \mod 4 \) can be either 1 or 3 – suppose it is 3
2. then \(p = 4t + 3 \) where \(t \) is some positive integer
3. but \(a^{(p-1)/2} = 1 \mod p \); \(a^{(4t+3-1)/2} = 1 \mod p \); \(a^{2t+1} = 1 \mod p \)

\(a^{2t+2} = a \mod p \); \(a^{2(t+1)} = a \mod p \); \((a^{t+1})^2 = a \mod p \)
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If p is prime and $0 < a < p$, then $a^{p-1} = 1 \mod p$

Ex: $3^{(5-1)} = 81 = 1 \mod 5$

$36^{(29-1)} = 37711171281396032013366321198900157303750656$

$= 1 \mod 29$

Every number a has either 2 square roots (\sqrt{a}, $-\sqrt{a}$) or 0 square roots

Solve $x^2 = a \mod p$ where p is a prime number.

1. $p \mod 4$ can be either 1 or 3 – suppose it is 3
2. then $p = 4t + 3$ where t is some positive integer
3. but $a^{(p-1)/2} = 1 \mod p; \ a^{(4t+3-1)/2} = 1 \mod p; \ a^{2t+1} = 1 \mod p$
 $\ a^{2t+2} = a \mod p; \ a^{2(t+1)} = a \mod p; \ (a^{t+1})^2 = a \mod p$
4. so, if $p = 4t + 3$, then find the t, the square root of a is a^{t+1}
Mathematics of Cryptography

Modulo arithmetic – Fermat's Little Theorem

If p is prime and $0 < a < p$, then $a^{p-1} = 1 \text{ mod } p$

\textit{Ex: } $3^{(5-1)} = 81 = 1 \text{ mod } 5$

$36^{(29-1)} = 37711171281396032013366321198900157303750656$

$= 1 \text{ mod } 29$

Every number a has either 2 square roots (\sqrt{a}, $-\sqrt{a}$) or 0 square roots

Solve $x^2 = a \text{ mod } p$ where p is a prime number.

1. $p \text{ mod } 4$ can be either 1 or 3 – suppose it is 3
2. then $p = 4t + 3$ where t is some positive integer
3. but $a^{(p-1)/2} = 1 \text{ mod } p; \quad a^{(4t+3-1)/2} = 1 \text{ mod } p; \quad a^{2t+1} = 1 \text{ mod } p$

$a^{2t+2} = a \text{ mod } p; \quad a^{2(t+1)} = a \text{ mod } p; \quad (a^{t+1})^2 = a \text{ mod } p$

4. so, if $p = 4t + 3$, then find the t, the square root of a is a^{t+1}

example: $p=19 = 4*4+3$, so $t=4$. Suppose a is 7

$\sqrt{7} \mod 19 = 7^5 \mod 19 = 11 \mod 19$

check: $121 \mod 19 = 7 \mod 19$
Finding a prime

Probability that a random number p is prime: $1/\ln(p)$

For 100 digit number this is $1/230$.
Mathematics of Cryptography

Finding a prime

Probability that a random number p is prime: $\frac{1}{\ln(p)}$

For 100 digit number this is $1/230$.

But how to test for being prime?
Mathematics of Cryptography

Finding a prime

Probability that a random number \(p \) is prime: \(1/\ln(p) \)

For 100 digit number this is 1/230.

But how to test for being prime?

If \(p \) is prime and \(0 < a < p \), then \(a^{p-1} = 1 \ mod \ p \)
Mathematics of Cryptography

Finding a prime

Probability that a random number p is prime: $1/\ln(p)$

For 100 digit number this is $1/230$.

But how to test for being prime?

If p is prime and $0 < a < p$, then $a^{p-1} = 1 \mod p$

$Pr(p \text{ isn't prime but } a^{p-1} = 1 \mod p)$ is small
Mathematics of Cryptography

Finding a prime

Probability that a random number p is prime: $\frac{1}{\ln(p)}$

For 100 digit number this is $1/230$.

But how to test for being prime?

If p is prime and $0 < a < p$, then $a^{p-1} \equiv 1 \mod p$

$Pr(p \text{ isn't prime but } a^{p-1} = 1 \mod p)$ is small

However, the time it takes to compute a^{p-1} is high but can be reduced to a feasible amount of computation using the following theorem
If p is prime, the only square roots of 1 mod p are 1 and -1 mod p.

Let x other than 1 or -1 be a square root of 1 mod p. Then $x^2 = 1 \mod p$.

Or, $(x-1)(x+1) = 0 \mod p$.

This means the product is divisible by prime p. By Euclid's lemma p divides at least one of $(x-1)$ or $(x+1)$.

Therefore, divide out one of $(x-1)$ or $(x+1)$.

In what's left either $(x-1) = 0 \mod p$ so x is 1 or $(x+1) = 0 \mod p$ so x is -1.
Mathematics of Cryptography

Finding a prime

Can always express a number $p-1$ as $2^b c$ for some odd number c.

ex: $48 = 2^4 3$

Here is the 2^b

110101100

Here is the odd number

Note: $(a^x)^2^3 = (a^{2^x})^2 = (a^{4^x})^2 = a^{8^x}$ so $\sqrt{\sqrt{\sqrt{(a^x)^2^3}}} = a^x$
Mathematics of Cryptography

Finding a prime

We can always express a number a^{p-1} as $a^{2^b c}$ for some odd number c.

We can compute $a^{p-1} \mod p$ by computing $a^c \mod p$ and squaring the result up to b times.

If $a^c = 1 \mod p$ then $a^{p-1} = 1 \mod p$ and we are done because the square root of 1 mod p is 1 mod p and the square root of that is 1 mod p and so on.

If $a^c \neq 1 \mod p$ then repeatedly square until either getting $a^{2^r c} = -1 \mod p$ for some $r < b$ or not. If $-1 \mod p$ is obtained, p is likely prime because from 2 slides back $\sqrt{a^{p-1}}$ is either -1 or 1, and 1 is taken care of above.

If $-1 \mod p$ is not obtained by squaring, then p cannot be prime because $\sqrt{a^{p-1} = 1 \mod p}$ is not 1 or -1.
Mathematics of Cryptography

Finding a prime

Second approach to understanding why.

By Fermat's Little Theorem, if \(p \) is prime, \(a^{2^b c} \) is 1 mod \(p \)

From 3 slides back, taking the square root of \(a^{2^b c} \) gives 1 or -1 mod \(p \). The square root of -1 mod \(p \) may be a number that is not 1 or -1 mod \(p \) (ex: try \(p = 17 \)), but the square root of 1 will still be 1. Hence repeatedly taking square roots until reaching \(a^c \) may always return 1s or may return a -1 mod \(p \) at some point followed by numbers that are not 1 or -1 mod \(p \).

Therefore, if \(p \) is prime then either \(a^c = 1 \) mod \(p \)
or for some \(r < b \), \(a^{2^r c} = -1 \) mod \(p \).
Finding a prime – here is an algorithm sketch

Choose a random odd integer p to test.
Calculate $b = \# \text{ times 2 divides } p - 1$.

Calculate m such that $p = 1 + 2^b m$.

Choose a random integer a such that $0 < a < p$.

If $a^m \equiv 1 \mod p \lor a^{2^j m} \equiv -1 \mod p$, for some $0 \leq j \leq b - 1$, then p passes the test. A prime will pass the test for all a.

Finding a prime – here is an algorithm sketch

Choose a random odd integer \(p \) to test.
Calculate \(b = \# \) times 2 divides \(p-1 \).
Calculate \(m \) such that \(p = 1 + 2^b m \).
Choose a random integer \(a \) such that \(0 < a < p \).

If \(a^m \equiv 1 \mod p \) \(\| \) \(a^{2jm} \equiv -1 \mod p \), for some \(0 \leq j \leq b-1 \),
then \(p \) passes the test. A prime will pass the test for all \(a \).

A non prime number passes the test for at most 1/4 of all possible \(a \).

So, repeat \(N \) times and probability of error is \((1/4)^N\).
Mathematics of Cryptography

Finding a prime – importance to RSA

Choose e first, then find p and q so $(p-1)$ and $(q-1)$ are relatively prime to e

RSA is no less secure if e is always the same and small

Popular values for e are 3 and 65537

For $e = 3$, though, must pad message or else ciphertext = plaintext

Choose $p \equiv 2 \mod 3$ so $p-1 = 1 \mod 3$ so p is relatively prime to e

So, choose random odd number, multiply by 3 and add 2, then test for primality
Mathematics of Cryptography

Chinese Remainder Theorem

There are certain things whose number is unknown. Repeatedly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder is 2. What will be the number?
Mathematics of Cryptography

Chinese Remainder Theorem

There are certain things whose number is unknown. Repeatedly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder is 2. What will be the number?

Application: An army general about 2000 years ago sent by messenger a note to the emperor telling how many troops he had. But the number was encrypted in the following way:

- dividing 602 by 3 gives a remainder of 2
- dividing 602 by 5 gives a remainder of 2
- dividing 602 by 7 gives a remainder of 0
- dividing 602 by 11 gives a remainder of 8

So the message is: 2,2,0,8

It turns out that by the Chinese Remainder Theorem (CRT) it is possible to uniquely determine the number of troops provided all the divisions were by relatively prime numbers.
Mathematics of Cryptography

Chinese Remainder Theorem

There are certain things whose number is unknown. Repeatedly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder is 2. What will be the number?

Application:
An old Chinese woman on the way to the market came upon a horse and rider. The horse stepped on her basket and crushed the eggs in her basket. The rider offered to pay for the broken eggs and asked how many eggs were in the basket. She did not remember the exact number, but when she had taken them out two at a time, there was one egg left. The same happened when she picked them out three, four, five, and six at a time, but when she took them seven at a time they came out even. What is the smallest number of eggs she could have had?
Mathematics of Cryptography

Chinese Remainder Theorem

If the prime factorization of n is $n_1 \times n_2 \times \ldots \times n_k$ then the system of equations:

\[
x \mod n_1 = a_1 \\
x \mod n_2 = a_2 \\
x \mod n_3 = a_3 \\
\vdots \\
x \mod n_k = a_k
\]

has a unique solution x given any a_1, a_2, \ldots, a_k where $x < n$.
Mathematics of Cryptography

Chinese Remainder Theorem

Why?

Define $n^i = n_1 n_2 \ldots n_{i-1} n_{i+1} \ldots n_k$

This means, for each $1 \leq i \leq k$, there is an r_i and s_i such that

$$r_i n_i + s_i n^i = 1$$

and r_i and s_i can be found using the gcd algorithm.

Since n^i contains all n_j as factors except for n_i it is evenly divisible by all but n_i.

Then $s_i n^i = 0 \mod n_j$ for all $i \neq j$ and

$$s_i n^i = 1 \mod n_i$$
Mathematics of Cryptography

Chinese Remainder Theorem

Why?

The solution is

\[x = \sum_{i=1}^{k} a_i \cdot s_i \cdot \frac{n_i}{n} \mod n_1 \cdot n_2 \cdot \ldots \cdot n_k \]

Therefore, as a check

\[x \mod n_1 = a_1 \times 1 + a_2 \times 0 + a_3 \times 0 + \ldots + a_k \times 0 = a_1 \]
\[x \mod n_2 = a_1 \times 0 + a_2 \times 1 + a_3 \times 0 + \ldots + a_k \times 0 = a_2 \]
\[x \mod n_3 = a_1 \times 0 + a_2 \times 0 + a_3 \times 1 + \ldots + a_k \times 0 = a_3 \]
\[\ldots \]
\[x \mod n_k = a_1 \times 0 + a_2 \times 0 + a_3 \times 0 + \ldots + a_k \times 1 = a_k \]
Mathematics of Cryptography

Chinese Remainder Theorem

\[
x \mod n_1 = a_1 \quad x \equiv a_1 \mod n_1 \\
x \mod n_2 = a_2 \quad x \equiv a_2 \mod n_2 \\
x \mod n_3 = a_3 \quad x \equiv a_3 \mod n_3 \\
\ldots \quad \ldots \\
x \mod n_k = a_k \quad x \equiv a_k \mod n_k
\]

has a unique solution \(x \) given any \(a_1, a_2, \ldots, a_k \) where \(x < n_1 n_2 \ldots n_k \)
Mathematics of Cryptography

Chinese Remainder Theorem

\[x \mod n_1 = a_1 \quad x \equiv a_1 \mod n_1 \]
\[x \mod n_2 = a_2 \quad x \equiv a_2 \mod n_2 \]
\[x \mod n_3 = a_3 \quad x \equiv a_3 \mod n_3 \]
...
\[x \mod n_k = a_k \quad x \equiv a_k \mod n_k \]

Return to the original problem:
divide \(x\) by 3 and get a remainder of 2 \(a_1 = 2\) \(n_1 = 3\)
divide \(x\) by 5 and get a remainder of 3 \(a_2 = 3\) \(n_2 = 5\)
divide \(x\) by 7 and get a remainder of 2 \(a_3 = 2\) \(n_3 = 7\)
What is the value of \(x\) that is no greater than \(3 \times 5 \times 7\)?
Mathematics of Cryptography

Chinese Remainder Theorem

\[x \mod n_1 = a_1 \quad x \equiv a_1 \mod n_1 \]
\[x \mod n_2 = a_2 \quad x \equiv a_2 \mod n_2 \]
\[x \mod n_3 = a_3 \quad x \equiv a_3 \mod n_3 \]

...

\[x \mod n_k = a_k \quad x \equiv a_k \mod n_k \]

Return to the original problem:

divide \(x \) by 3 and get a remainder of 2 \(a_1 = 2 \) \(n_1 = 3 \)
divide \(x \) by 5 and get a remainder of 3 \(a_2 = 3 \) \(n_2 = 5 \)
divide \(x \) by 7 and get a remainder of 2 \(a_3 = 2 \) \(n_3 = 7 \)

What is the value of \(x \) that is no greater than \(3 \times 5 \times 7 \)?

Inverses of:

\[5 \times 7 \mod 3 = 2 \quad 3 \times 7 \mod 5 = 1 \quad 3 \times 5 \mod 7 = 1 \]
Mathematics of Cryptography

Chinese Remainder Theorem

\[x \mod n_1 = a_1 \quad x \equiv a_1 \mod n_1 \]
\[x \mod n_2 = a_2 \quad x \equiv a_2 \mod n_2 \]
\[x \mod n_3 = a_3 \quad x \equiv a_3 \mod n_3 \]

\[\vdots \]
\[x \mod n_k = a_k \quad x \equiv a_k \mod n_k \]

Return to the original problem:
divide \(x \) by 3 and get a remainder of 2 \(a_1 = 2, n_1 = 3 \)
divide \(x \) by 5 and get a remainder of 3 \(a_2 = 3, n_2 = 5 \)
divide \(x \) by 7 and get a remainder of 2 \(a_3 = 2, n_3 = 7 \)

What is the value of \(x \) that is no greater than \(3 \times 5 \times 7 \)?

Inverses of: \(5 \times 7 \mod 3 = 2 \), \(3 \times 7 \mod 5 = 1 \), \(3 \times 5 \mod 7 = 1 \)

\[x = 2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1 \mod 3 \times 5 \times 7 = 23 \] (128, 233, ...
Chinese Remainder Theorem

Second problem:

\[x = 1 \mod 2 \implies x = 2t + 1 \]
\[x = 1 \mod 3 \implies x = 3p + 1 \]
\[x = 1 \mod 4 \implies x = 4r + 1 \]
\[x = 1 \mod 5 \implies x = 5s + 1 \]
\[x = 1 \mod 6 \implies x = 6q + 1 \]
\[x = 0 \mod 7 \implies x = 7w \]
Mathematics of Cryptography

Chinese Remainder Theorem

Second problem: Whoops! not a prime factorization

\[x = 1 \mod 2 \implies x = 2 \times t + 1 \]
\[x = 1 \mod 3 \implies x = 3 \times p + 1 \]
\[x = 1 \mod 4 \implies x = 4 \times r + 1 \]
\[x = 1 \mod 5 \implies x = 5 \times s + 1 \]
\[x = 1 \mod 6 \implies x = 6 \times q + 1 \]
\[x = 0 \mod 7 \implies x = 7 \times w \]

so, \[2 \times t = 3 \times p = 4 \times r = 5 \times s = 6 \times q \]

from last two \[q = v \times 5 \] and \[s = v \times 6 \]

but \[r = 3 \times q/2 \] so \[q = v \times 2 \times 5 \] and \[s = v \times 2 \times 6 \] making \[r = v \times 3 \times 5 \]

also \[p = 2 \times q = v \times 4 \times 5 \]

and \[t = 2 \times r = v \times 30 \]

so \[x = 60 \times v + 1 \]; \[n = 7 \times w \]

\[7 \times w = 60 \times v + 1 \]
Mathematics of Cryptography

Chinese Remainder Theorem

Immediate consequence:

Suppose everyone's RSA public key e part is 3. Consider the same message sent to three people. These are:

$$c[1] = m^3 \mod n[1]$$
$$c[2] = m^3 \mod n[2]$$
$$c[3] = m^3 \mod n[3]$$

By the Chinese Remainder Theorem

One can compute $m^3 \mod n[1] \times n[2] \times n[3]$

Since m is smaller than any of the $n[i]$, m^3 is known and taking the cube root finds m.
Mathematics of Cryptography

\(\mathbb{Z}^*n \)

All numbers less than \(n \) that are relatively prime with \(n \)

Examples: \(\mathbb{Z}^*10 = \{ 1, 3, 7, 9 \} \); \(\mathbb{Z}^*15 = \{ 1, 2, 4, 7, 8, 11, 13, 14 \} \)

If numbers \(a, b \) are members of \(\mathbb{Z}^*n \) then so is \(a \times b \mod n \).

Examples: \(4 \times 11 \mod 15 = 44 \mod 15 = 14; \)
\(13 \times 14 \mod 15 = 182 \mod 15 = 2. \)
Mathematics of Cryptography

\mathbb{Z}^*n

All numbers less than n that are relatively prime with n

Examples: $\mathbb{Z}^*10 = \{1, 3, 7, 9\}$; $\mathbb{Z}^*15 = \{1, 2, 4, 7, 8, 11, 13, 14\}$

If numbers a, b are members of \mathbb{Z}^*n then so is $a \times b \mod n$.

Examples: $4 \times 11 \mod 15 = 44 \mod 15 = 14$;
$13 \times 14 \mod 15 = 182 \mod 15 = 2$.

Why?

Since a and b are relatively prime to n there must be integers s.t.

$u \times a + v \times n = 1$ and $w \times b + x \times n = 1$.
Mathematics of Cryptography

Z^* n

All numbers less than n that are relatively prime with n

Examples: $Z^{*10} = \{ 1, 3, 7, 9 \}$; $Z^{*15} = \{ 1, 2, 4, 7, 8, 11, 13, 14 \}$

If numbers a, b are members of Z^* n then so is $a \times b \mod n$.

Examples: $4 \times 11 \mod 15 = 44 \mod 15 = 14$;
$13 \times 14 \mod 15 = 182 \mod 15 = 2$.

Why?

Since a and b are relatively prime to n there must be integers s.t.
$u \times a + v \times n = 1$ and $w \times b + x \times n = 1$.

Multiply both equations:
$(u \times w) \times a \times b + (u \times x \times a + v \times w \times b + x \times v \times n) \times n = 1$

Hence $a \times b$ is relatively prime to n.
Mathematics of Cryptography

Euler's Totient Function:

Defined: \(\phi(n) \) is number of elements in \(\mathbb{Z}^*n \).

Example: \(\phi(7) = 6 (\{1,2,3,4,5,6\}) \); \(\phi(10) = 4 (\{1,3,7,9\}) \)

Suppose \(n = p \times q \) and \(p \) and \(q \) are relatively prime

Example: \(\phi(70) \):

\[
\{ 1, 3, 9, 11, 13, 17, 19, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 67, 69 \}
\]

\(\phi(70) = \phi(7)\phi(10) = 24. \)

Why?
Mathematics of Cryptography

Euler's Totient Function:

Defined: \(\phi(n) \) is number of elements in \(\mathbb{Z}^*n \).

Example: \(\phi(7) = 6 \) (\{1,2,3,4,5,6\}) ; \(\phi(10) = 4 \) (\{1,3,7,9\})

Suppose \(n = p \times q \) and \(p \) and \(q \) are relatively prime

Example: \(\phi(70) \):
\[
\{ 1, 3, 9, 11, 13, 17, 19, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 67, 69 \}
\]

\(\phi(70) = \phi(7) \phi(10) = 24. \)

Why? By the Chinese Remainder Theorem there is a 1-1 correspondence between a number \(m \) and
\[
m_p = m \mod p \quad 1 = 29 \mod 7 \quad 4 = 39 \mod 7
\]
\[
m_q = m \mod q \quad 9 = 29 \mod 10 \quad 9 = 39 \mod 10
\]
Mathematics of Cryptography

Euler's Totient Function:

Defined: $\phi(n)$ is number of elements in \mathbb{Z}^*n.

Example: $\phi(7) = 6 (\{1,2,3,4,5,6\})$; $\phi(10) = 4 (\{1,3,7,9\})$

Suppose $n = p \times q$ and p and q are relatively prime

Example: $\phi(70)$:

\{ 1, 3, 9, 11, 13, 17, 19, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 67, 69 \}

$\phi(70) = \phi(7)\phi(10) = 24$.

Why? By the Chinese Remainder Theorem there is a 1-1 correspondence between a number m and

\[m \equiv m \mod p \]

\[m \equiv m \mod q \]

If m is relatively prime to pq, then there are integers u,v, such that $um + vpq = 1$.
Mathematics of Cryptography

Euler's Totient Function:

Substituting $m = m_p + kp$ gives

$um_p + (uk + vq)p = 1$

so m_p is relatively prime to p. Same for m_q and q.

Therefore, m in $\mathbb{Z}^{*}pq$ means m_p is in $\mathbb{Z}^{*}p$ and m_q is in $\mathbb{Z}^{*}q$.

Why? By the Chinese Remainder Theorem there is a 1-1 correspondence between a number m and

$m_p = m \mod p$

$m_q = m \mod q$

If m is relatively prime to pq, then there are integers u,v, such that

$um + vpq = 1$.
Euler's Totient Function:

Substituting \(m = m_p + kp \) gives

\[
um_p + (uk + vq)p = 1
\]

so \(m_p \) is relatively prime to \(p \). Same for \(m_q \) and \(q \).

Therefore, \(m \) in \(\mathbb{Z}^*pq \) means \(m_p \) is in \(\mathbb{Z}^*p \) and \(m_q \) is in \(\mathbb{Z}^*q \).

Similar tricks can be used to show that \(m_q \) in \(\mathbb{Z}^*q \) and \(m_p \) in \(\mathbb{Z}^*p \) imply \(m \) in \(\mathbb{Z}^*pq \).

Why? By the Chinese Remainder Theorem there is a 1-1 correspondence between a number \(m \) and

\[
m_p = m \mod p
\]

\[
m_q = m \mod q
\]

If \(m \) is relatively prime to \(pq \), then there are integers \(u,v \), such that \(um + vpq = 1 \).
Mathematics of Cryptography

Euler's Theorem:

For all a in \mathbb{Z}^*_n, $a^{\phi(n)} = 1 \mod n$.

Why?

By example: suppose $n = 10$, $a = 3$. Multiply all elements of $\mathbb{Z}^*_n = \{ 1, 3, 7, 9 \}$ to get $x = 189$. But $x \mod 10 = 9$ which is an element of \mathbb{Z}^*_n. The inverse of x is 9.
Mathematics of Cryptography

Euler's Theorem:

For all a in \mathbb{Z}^*n, $a^{\phi(n)} = 1 \mod n$.

Why?

By example: suppose $n = 10$, $a = 3$. Multiply all elements of $\mathbb{Z}^*n = \{1, 3, 7, 9\}$ to get $x = 189$. But $x \mod 10 = 9$ which is an element of \mathbb{Z}^*n. The inverse of x is 9.

Multiply all elements of \mathbb{Z}^*n by 3 and multiply all those numbers:

$$(3 \times 1) \times (3 \times 3) \times (3 \times 7) \times (3 \times 9) = 3^{\phi(n)} \times x$$

But $3 \times 1 = 3$, $3 \times 3 = 9$, $3 \times 7 = 1$, $3 \times 9 = 7$ (all mod 10)

Hence $a^{\phi(n)} \times x = x \mod n$.

So, $a^{\phi(n)} = 1 \mod n$
Euler's Theorem:

For all \(a \) in \(Z^*n \), and any non-neg int \(k \), \(a^{(k \times \phi(n) + 1)} = a \mod n \).

Why?
Mathematics of Cryptography

Euler's Theorem:

For all a in \mathbb{Z}^*n, and any non-neg int k, $a^{(k\times\phi(n)+1)} = a \mod n$.

Why? $a^{(k\times\phi(n)+1)} = (a^{\phi(n)})^k \times a = 1^k \times a = a$
Euler's Theorem:

For all a in \mathbb{Z}^*n, and any non-neg int k, $a^{(k \times \phi(n) + 1)} = a \mod n$.

Why? $a^{(k \times \phi(n) + 1)} = (a^{\phi(n)})^k \times a = 1^k \times a = a$

For all a and any non-neg int k, $a^{(k \times \phi(n) + 1)} = a \mod n$, if $n = p \times q$, p and q are prime, then $\phi(n) = (p-1) \times (q-1)$
Euler's Theorem:

For all a in Z^*n, and any non-neg int k, $a^{(k \times \phi(n)+1)} = a \mod n$.

Why?

$a^{(k \times \phi(n)+1)} = (a^{\phi(n)})^k \times a = 1^k \times a = a$

For all a and any non-neg int k, $a^{(k \times \phi(n)+1)} = a \mod n$, if $n = p \times q$, p and q are prime then $\phi(n) = (p-1) \times (q-1)$

Why?
Mathematics of Cryptography

Euler's Theorem:

For all a in \mathbb{Z}^*n, and any non-neg int k, $a^{(k\times\phi(n)+1)} = a \mod n$.

Why?

$\quad a^{(k\times\phi(n)+1)} = (a^{\phi(n)})^k \times a = 1^k \times a = a$

For all a and any non-neg int k, $a^{(k\times\phi(n)+1)} = a \mod n$, if $n = p \times q$, p and q are prime then $\phi(n) = (p-1) \times (q-1)$

Why? Only interesting case: a is a multiple of p or q.

Suppose a is a multiple of q.

Since a is relatively prime to p, $a^{\phi(p)} = 1 \mod p$.

Since $\phi(n) = \phi(p) \times \phi(q)$, (mod p)

$\quad a^{(k\times\phi(n)+1)} = (a^{\phi(p)\times\phi(q)})^k \times a = 1^{(k\times\phi(n))} \times a = a \mod p \quad \text{and}$

$a = 0 \mod q$ so $\quad a^{(k\times\phi(n)+1)} = 0 = a \mod q$.

By CRT $\quad a^{(k\times\phi(n)+1)} = a \mod n$.
RSA:

\[n = p \times q \]

\[\phi(n) = (p-1) \times (q-1) \]

\(e \) – relatively prime to \(\phi(n) \)

\(d \) – such that \(e \times d - 1 \) divisible by \(\phi(n) \)

hence \((e \times d - 1) / \phi(n) = k \), a positive integer

so \(e \times d = k \times \phi(n) + 1 \)

therefore \(m^{e \times d} = m^{k \times \phi(n) + 1} = m \mod n \)