Encrypting a large message

Cipher Block Chaining (CBC) IV is a random number

Block Cipher

message

m1 m2 m3 m4 m5 m6

c1 c2 c3 c4 c5 c6

IV ⊕ Secret E E E E E E
Block Cipher

Decrypting a large message

Cipher Block Chaining (CBC) IV is a random number

\[\text{message} \]

\[\begin{align*}
 m_1 & \quad m_2 & \quad m_3 & \quad m_4 & \quad m_5 & \quad m_6 \\
 c_1 & \quad c_2 & \quad c_3 & \quad c_4 & \quad c_5 & \quad c_6 \\
\end{align*} \]

IV \rightarrow \oplus \quad m_1 \quad \oplus \quad m_2 \quad \oplus \quad m_3 \quad \oplus \quad m_4 \quad \oplus \quad m_5 \quad \oplus \quad m_6

Secret \rightarrow D \quad m_1 \quad D \quad m_2 \quad D \quad m_3 \quad D \quad m_4 \quad D \quad m_5 \quad D \quad m_6

\[\text{D} \]

\[\text{D} \]
Block Cipher

En/Decrypting a large message

Cipher Block Chaining (CBC)

Discussion:

1. Must use random IV – guarantees that same plaintext causes different ciphertext
 If IV is not random, information is revealed even if message not decrypted

Examples:
 Commander orders troops to hold several times then attack
 If salary fields are known, can determine whose salary has changed

Benefit:
 attackers cannot supply chosen plaintext to the encryption algorithm itself, even if chosen plaintext can be supplied to the CBC
Block Cipher

En/Decrypting a large message

Cipher Block Chaining (CBC)

Discussion:

1. Must use random IV – guarantees that same plaintext causes different ciphertext
 If IV is not random, information is revealed even if message not decrypted

 Examples:
 Commander orders troops to hold several times then attack
 If salary fields are known, can determine whose salary has changed

 Benefit:
 attackers cannot supply chosen plaintext to the encryption algorithm itself, even if chosen plaintext can be supplied to the CBC

2. Attacker can rearrange blocks with predictable effect on resulting plaintext.
 Changing \(c_i \) has a predictable effect on \(m_{i+1} \). Might decrypt to this:

 | Hello | 7834 | → | &8*# | 7835 |
Block Cipher

En/Decryption of a large message

Cipher Block Chaining (CBC)

Discussion:

1. Must use random IV – guarantees that same plaintext causes different ciphertext.
 If IV is not random, information is revealed even if message not decrypted.

 Examples:
 - Commander orders troops to hold several times then attack.
 - If salary fields are known, can determine whose salary has changed.

 Benefit:
 - Attackers cannot supply chosen plaintext to the encryption algorithm itself, even if chosen plaintext can be supplied to the CBC.

2. Attacker can rearrange blocks with predictable effect on resulting plaintext.
 Changing c_i has a predictable effect on m_{i+1}. Might decrypt to this:

 \[
 \begin{array}{cc}
 \text{Hello} & 7834 \\
 \rightarrow & \text{&8*#} & 7835
 \end{array}
 \]

3. If $m_1...m_n$ and $c_1...c_n$ and IV are known, all decryptions of c_i are known.
 If enough of these are obtained, a new ciphertext can be constructed and the decrypt would be known.
Generating Message Integrity Check (MIC)

Suppose message is sent in the clear

Only send the residue as the check on the ciphertext and the plaintext message (no confidentiality)
Generating Message Integrity Check (MIC)

Integrity plus confidentiality

Huh? Send last block twice? Tamperer merely sends tampered message and just repeats its last block!!
Generating Message Integrity Check (MIC)

To use CBC for both message integrity and encryption, use different keys for the residue and ciphertext!