Multiple Independent Levels of Security

What

high-assurance security architecture based on the concepts of separation and controlled information flow – for safety-critical systems

MILS architecture transforms data from one classification level to another

Separate data streams (no communication between streams)

Independent, secure enclaves, different classification levels

Security policies protect classified data
Multiple Independent Levels of Security

What

high-assurance security architecture based on the concepts of separation and controlled information flow – for safety-critical systems
implemented by separation mechanisms that support both untrusted and trustworthy components
ensures security cannot be bypassed by alternate comm path
ensures a system is tamperproof
 unauthorized changes to configuration & data is prevented
ensures a system can be evaluated
 requires: modular components, well specified, compact, simple components, formally provable properties
is always invoked
 every access and message is checked by an appropriate security monitor
Multiple Independent Levels of Security

What

high-assurance security architecture based on the concepts of separation and controlled information flow – for safety-critical systems

implemented by separation mechanisms that support both untrusted and trustworthy components

ensures security cannot be bypassed by alternate comm path

ensures a system is tamperproof

unauthorized changes to configuration & data is prevented

ensures a system can be evaluated

requires: modular components, well specified, compact, simple components, formally provable properties

is always invoked

every access and message is checked by an appropriate security monitor

employs one or more separation mechanisms: separation kernel, partitioning communication system, physical separation
Multiple Independent Levels of Security

How
MILS is a layered approach with lower layers providing security services to higher layers.
Each layer is responsible for security services in its own domain and nothing else.
The layered approach limits the complexity and scope of security mechanisms so evaluation becomes possible.

sep kern → partitioning, scheduling, and secure comm between partitions
Multiple Independent Levels of Security

Supports Foundational Security Policies:

End-to-end Information Flow
Policy for checking integrity of data moving from one component to another
Policy for authorization of movement of information

End-to-end Data Isolation
Policy says how transparent data is (to other users/processes)
Has policies for partial disclosure of information (e.g. headers)
Tradeoff: many-user access means higher concurrency and worse performance

End-to-end Periods Processing
While sensitive information is being processed, all other applications and data use are prohibited
After processing, the memory must be sanitized to remove crypto variables and so on

End-to-end Damage Limitation
Application error damage does not propagate to other partitions
Multiple Independent Levels of Security

What

supports enforcement of one or more application/system specific security policies by authorizing information flow only between components in the same security domain or through trustworthy security monitors

MILS architecture allows for execution of multiple applications at potentially multiple security levels or classifications

Each is protected from others and each may communicate with the others based on mechanisms that support policy enforcement

The old way to get separation was to have physically separate computers, networks, and displays – not practical

The new way to get separation allows enclaves of different classification levels to run on the same processor, even
Multiple Independent Levels of Security

Importance

Military needs systems that are very highly safe and secure. MILS architectures can be evaluated according to the Common Criteria. The US military requires evaluation to high security standards. COTS components that have a very high evaluation are desirable as they can save plenty of money in design and certification costs.

Major application: military jets
Imagine: a squadron of planes is suddenly disabled in the air due to enemy intrusion. F-35 Joint Strike Fighter Communications, Navigation, Identification (CNI) system uses a MILS architecture.

Major application: control of nuclear power generation

Major application: control of sewage treatment systems
Multiple Independent Levels of Security
Separation Kernels

Purpose: provide multi-level security on general purpose multi-user systems
Multiple Independent Levels of Security

Separation Kernels

Purpose: provide multi-level security on general purpose multi-user systems

Creates an environment which is indistinguishable from that of a distributed physical system
Multiple Independent Levels of Security

Separation Kernels

Purpose: provide multi-level security on general purpose multi-user systems

Creates an environment which is indistinguishable from that of a distributed physical system

It must appear as if each enclave is a separate, isolated machine and that information can only flow from one machine to another along known external communication lines
Multiple Independent Levels of Security

Separation Kernels

Purpose: provide multi-level security on general purpose multi-user systems

Creates an environment which is indistinguishable from that of a distributed physical system

It must appear as if each enclave is a separate, isolated machine and that information can only flow from one machine to another along known external communication lines

It must be proved that there are no channels for information flow between enclaves other than those explicitly provided
Multiple Independent Levels of Security

Separation Kernels

Purpose: provide multi-level security on general purpose multi-user systems

Creates an environment which is indistinguishable from that of a distributed physical system

It must appear as if each enclave is a separate, isolated machine and that information can only flow from one machine to another along known external communication lines

It must be proved that there are no channels for information flow between enclaves other than those explicitly provided

- Data isolation ensures an enclave can't access resources in other enclaves
- Periods processing ensures applications within enclaves execute for the specified duration in the system schedule
- Information flow defines permitted info flows between enclaves
- Fault isolation ensures a failure in one enclave does not impact any other enclave within the system
Multiple Independent Levels of Security

Separation Kernels

Separation Kernel Protection Profile:
High assurance systems require proof that system meets critical safety and security requirements

Protection profile provides a formal notion of system architecture and data flows that can be subjected to formal analysis (theorem provers)

The following can be proved formally from PP:
Protection of all resources from unauthorized access

Separation of internal resources used by (target of evaluation) functions from exported resources made available to subjects

Isolation and partitioning of exported resources

Correct mediation of information flows between partitions and between exported resources

Correct auditing procedures
Multiple Independent Levels of Security

Separation Kernels

Available from

Green Hills Software https://www.ghs.com/
- Integrity 178B RTOS used in F-16, F-22, F-35, Airbus 380
- Very tiny kernel – 4K lines
- Kernel is evaluated to NSA EAL 6+ (semi-formally verified)

- LynxSecure separation kernel and embedded hypervisor
- LynxOS-178 RTOS (LynxOS on Atari 1040ST in 1986-1989)

SYSGO https://www.sysgo.com/
- PikeOS – small set of privileged services
- Used in products certified by the French NIS Agency

Wind River Systems https://www.windriver.com/
- VxWorks MILS platform compliant with Separation Kernel Protection Profile (SKPP) from the NSA

- OKL4 microkernel – in billions of mobile devices
Multiple Independent Levels of Security
Partitioning Communications System (PCS)
A communications security architecture compliant with an information flow separation policy

Extends the MILS architecture to network flows

Works with a separation kernel to ensure
 System security channels cannot be bypassed
 System can be evaluated
 System is tamperproof

Supports (a kind of) formal proof of correctness
Multiple Independent Levels of Security

Formal Proof of Correctness

Introduce and define States of a system in terms of security

Define transition rules from State to State based on various kinds of triggers (e.g. input or clock timer firing)

Check that the initial State is considered secure

For each transition from State A to State B, check that if A is considered secure then B can be considered secure

Then we have a proof that the system is secure
Multiple Independent Levels of Security

Formal Proof of Correctness

Operation:
Triple: (subject, object, operation)
Example: (franco, sshd, execute)

Subjects and Objects labeled with security levels in partial order

But each subject has a current security level and a maximum security level
Thus subjects can be 'downgraded' in security temporarily

Access control matrix (M): gives permissions for a given operation (o) on particular sets of security levels (l)

A State: (o,M,l)
Multiple Independent Levels of Security

Formal Proof of Correctness

Policy types (discretionary and mandatory):

- **Discretionary**: access may be permitted (i.e. (s,o,op))
- **No read-up**: subject may not read object at higher security level
- **No write-down**: subject can't write to object at lower level

Subjects are processes, memory is an object
Subjects have access to memory
Subjects can act as channels by reading one memory object
and writing that information to another memory object

Trusted subjects are exempt from no write-down policy
Subjects can be 'downgraded' in security temporarily to loosen the mandatory restrictions

A State is secure if all current access triples (s,o,op) are permitted by the policies above

A State transition is secure if it is between two secure States
If the initial State is secure and all transitions are secure then the system is secure
Multiple Independent Levels of Security

Formal Proof of Correctness

Operations for a real-time OS:
- Execute:
- Read:
- Write:
- Read and write:
 - Get-read: requests read access to an object
 - Release-read: release an object
 - Give-read: grant read access to another process
 - Rescind-read: withdraw read permission given to another process
- Create-object: OS has to check write access on the object directory is permitted and the security level of the object dominates the security level of the process
- Change-subject-current-security-level:
- Change-object-current-security-level: