Public Key Cryptosystems - Diffie Hellman
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows.
Can only use an insecure communications channel for exchange.
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows.
Can only use an insecure communications channel for exchange.

\[p, g \]

- \(p \): prime & \((p-1)/2\) prime
- \(g \): less than \(p \)
 \[n = g^k \mod p \]
 for all \(0 < n < p \)
 and some \(k \)

(see http://gauss.ececs.uc.edu/Courses/c472/java/Generator/zstarn.html)
A strong prime \(p \):

- \(p \) is large
- \(p-1 \) has large prime factors (\(p = aq+1 \) for integer \(a \) and prime \(q \))
- \(q-1 \) has large prime factors (\(q = br+1 \) for integer \(b \), prime \(r \))
- \(p+1 \) has large prime factors.

A “large” safe prime is likely to be a strong prime.

It is shown by Stephen Pohlig and Martin Hellman in 1978 that if all the factors of \(p-1 \) are less than \(\log^c p \), then the problem of solving discrete logarithm modulo \(p \) is in P. Therefore, for cryptosystems based on discrete logarithm it is required that \(p-1 \) has at least one large prime factor.
Public Key Cryptosystems - Diffie Hellman

Important property:

\[(g^a \mod p)^b \mod p = (g^b \mod p)^a \mod p\]

\[p: \text{prime } \& \ (p-1)/2 \text{ prime}\]
\[g: \text{less than } p\]
\[n = g^k \mod p\]
\[\text{for all } 0 < n < p\]
\[\text{and some } k\]

(see http://gauss.ececs.uc.edu/Courses/c472/java/Generator/zstarn.html)
Public Key Cryptosystems - Diffie Hellman

Important property:

\[(g^a \mod p)^b \mod p = (g^b \mod p)^a \mod p\]

Example:

\[p = 563, \ g = 5, \ a = 9, \ b = 14\]

\[5^9 \mod 563 = 1953125 \mod 563 = 78\]

\[78^{14} = 308549209196654470906527744 \mod 563 = 117\]
Public Key Cryptosystems - Diffie Hellman

Important property:

\[(g^a \mod p)^b \mod p = (g^b \mod p)^a \mod p\]

Example:

\[p = 563, \ g = 5, \ a = 9, \ b = 14\]

\[5^9 \mod 563 = 1953125 \mod 563 = 78\]

\[78^{14} = 308549209196654470906527744 \mod 563 = 117\]

\[5^{14} \mod 563 = 6103515625 \mod 563 = 534\]

\[534^9 = 153312511596308814665178256828300148736 \mod 563 = 117\]
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows
Can only use an insecure communications channel for exchange
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows
Can only use an insecure communications channel for exchange
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows.
Can only use an insecure communications channel for exchange.

Receiver – 563, 5 – Sender

14 – 563, 5 – 9

Attacker
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows
Can only use an insecure communications channel for exchange

\[5^9 \mod 563 = 78 \]
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows.
Can only use an insecure communications channel for exchange.

\[78^{14} \mod 563 = 117 \]
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows
Can only use an insecure communications channel for exchange
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows
Can only use an insecure communications channel for exchange

$$5^{14} \mod 563 = 534$$

$$534^9 \mod 563 = 117$$
Public Key Cryptosystems - Diffie Hellman

Get two parties to share a secret number that no one else knows
Can only use an insecure communications channel for exchange
Public Key Cryptosystems - Diffie Hellman

Vulnerability to the "Man-in-the-middle" attack

Sender

Receiver

Attacker

563, 5

14

9

34
Public Key Cryptosystems - Diffie Hellman

Vulnerability to the "Man-in-the-middle" attack
Public Key Cryptosystems - Diffie Hellman

Vulnerability to the "Man-in-the-middle" attack

14 → Receiver → 563, 5 → Sender → 9

34 → Attacker → 250
Public Key Cryptosystems - Diffie Hellman

Vulnerability to the "Man-in-the-middle" attack

Diagram:
- Receiver
- Sender
- Attacker
- Numbers 14, 563, 5, 205, 34, 250
Public Key Cryptosystems - Diffie Hellman

Vulnerability to the "Man-in-the-middle" attack

14 -> Receiver -> Sender

563, 5

459

34 -> Attacker

250
Public Key Cryptosystems - Diffie Hellman

Vulnerability to the "Man-in-the-middle" attack

14 → Receiver ← 563, 5 → Sender → 9

459 ↓ 34 ↓ 250

534 ↓ 563, 5 ↓ 250

459 ↓ 34 ↓ 250
Public Key Cryptosystems - Diffie Hellman

Vulnerability to the "Man-in-the-middle" attack
Public Key Cryptosystems - Diffie Hellman

Vulnerability to the "Man-in-the-middle" attack

14
Receiver

563, 5

205
Sender

34
Attacker

459

9

459

250

459
Public Key Cryptosystems - Diffie Hellman

Vulnerability to the "Man-in-the-middle" attack
Public Key Cryptosystems - Diffie Hellman

Fixing the vulnerability to the "Man-in-the-middle" attack
Public Key Cryptosystems - Diffie Hellman

Where is the security?

Attacker sees $A=g^a \mod p$, $B=g^b \mod p$ but does not know a,b
Public Key Cryptosystems - Diffie Hellman

Where is the security?

Attacker sees $A = g^a \mod p$, $B = g^b \mod p$ but does not know a, b

Attacker needs to compute $K = g^{ab} \mod p$ from the above.

Can be done if it is feasible to take the $\log_p A$ and $\log_p B$

This is called the discrete logarithm problem.

Computing the discrete logarithm of a number modulo p takes roughly the same amount of time as factoring the product of two primes the same size as p, which is what the security of the RSA cryptosystem relies on. Thus, the Diffie-Hellman protocol is roughly as secure as RSA.
Public Key Cryptosystems - Diffie Hellman

Signing a message:

Let p, q, r be primes such that
\[p = 2q + 1, \text{ and } q = 2r + 1 \]

Let m be the message to be signed.

Let x be a permanent secret key owned by the signer.

Let $g^x \mod q$ be the public key associated with x.
Public Key Cryptosystems - Diffie Hellman

Signing a message:

Let \(p, q, r \) be primes such that
\[
p = 2q+1, \text{ and } q = 2r+1
\]
Let \(m \) be the message to be signed.
Let \(x \) be a permanent secret key owned by the signer
Let \(g^x \mod q \) be the public key associated with \(x \)

Generate a random secret \(y \) with public key \(g^y \mod p \)
Let \(Y = (g^y \mod p) \mod q; \) \(s \) be the signature
Find \(a, b, c \) s.t. \(ax + by = c \) with the following possibilities
\[
\begin{align*}
a &= m, \quad b = Y, \quad c = s; \\
a &= 1, \quad b = Ym, \quad c = s; \\
a &= 1, \quad b = Ym, \quad c = ms; \\
a &= 1, \quad b = Ym, \quad c = Ys; \\
a &= 1, \quad b = ms, \quad c = Ys
\end{align*}
\]
Public Key Cryptosystems - Diffie Hellman

Signing a message:

Let p, q, r be primes such that

\[p = 2q + 1, \text{ and } q = 2r + 1 \]

Let m be the message to be signed.

Let x be a permanent secret key owned by the signer.

Let $g^x \mod q$ be the public key associated with x.

Generate a random secret y with public key $g^y \mod p$.

Let $Y = (g^y \mod p) \mod q$; s be the signature.

Find a, b, c s.t. $ax + by = c$ with the following possibilities:

\[a=m, \quad b=Y, \quad c=s \]
\[a=1, \quad b=YM, \quad c=s \]
\[a=1, \quad b=YM, \quad c=ms \]
\[a=1, \quad b=YM, \quad c=Ys \]
\[a=1, \quad b=ms, \quad c=Ys \]

Verify:

\[(g^x \mod q)^a \times (g^y \mod p)^b = g^c \mod p \]
Public Key Cryptosystems - Diffie Hellman

Signing a message:

Can't do this: $s = xm \mod q$ – to check the signature do this: $g^s \mod p = (g^x \mod p)^m \mod p$

But then $x = s/m \mod q$ revealing the secret x
Public Key Cryptosystems - Diffie Hellman

Signing a message:

Can't do this: \(s = xm \mod q \) – to check the signature do this: \(g^s \mod p = (g^x \mod p)^m \mod p \)

But then \(x = s/m \mod q \) revealing the secret \(x \)

A different \(y \) must be chosen for each signature -
If you have two sets of \(a, b, c \) for the same \(x, y \),
You can solve for the secrets \(x \) and \(y \).
Public Key Cryptosystems - Diffie Hellman

Signing a message:

Can't do this: $s = xm \mod q$ – to check the signature do this: $g^s \mod p = (g^x \mod p)^m \mod p$

But then $x = s/m \mod q$ revealing the secret x

A different y must be chosen for each signature -

If you have two sets of a, b, c for the same x, y,

You can solve for the secrets x and y.

El Gamal and DSA have $a = 1, b = Ym, c = Ys$