
20-EECE-4029/6029, 20-ELTN-4022 - Introduction to Operating Systems

Review Notes for Final Exam
December, 2013

ACPI and Power Management

Motivation

• Power consumption can be controlled. This is especially important for mobile devices.

C States

• Power states

⊲ C0 - running

⊲ C1 - halt - main internal clocks off by software

⊲ C2 - stop - main internal clocks off by hardware

⊲ C3 - sleep - all internal clocks off

⊲ C4 - deeper sleep - clocks off, voltage reduced

⊲ C6 - deep power down - voltage reduced to anything

P States

• Performance states

• A processor must be in state C0 to use a P state other than P0.

• Mainly control processor speed.

• Performance states allow OSPM to make tradeoffs between performance and energy
conservation

• Performance states have the greatest impact when the states invoke different processor
efficiency levels as opposed to a linear scaling of performance and energy consumption.

• Rough definitions are as follows:

⊲ P0 - maximum power and frequency

⊲ P1 - less power, lower frequency than P0

• ...

⊲ Pn - n ≤ 16 - lowest power, lowest frequency

Advanced Configuration & Power Interface

• ACPI allows the operating system to control the amount of power each device is given
(e.g. standby or power-off).

• Also controls/checks thermal zones, battery levels, PCI IRQ routing, CPUs, NUMA
(non-uniform memory access) domains and so on.

• Information about ACPI is stored in the BIOSs memory.

• Two main parts:

1. Tables used by the OS for conguration during boot (# of CPUs, APIC details,
NUMA memory ranges, etc).

2. The run-time ACPI environment: AML code (a platform independent OOP lan-
guage that comes from the BIOS and devices) and ACPI SMM (System Manage-
ment Mode) code.



Device Drivers

Motivation

• Software that allows applications to interface easily with hardware devices

Kernel module components

• Initialization

⊲ choose whether the device is memory mapped or not. If not, use request region

to have the OS allocate protected space. If so, use request mem region to reserve
space and use ioremap to map the space in terms of pages

⊲ register the device with a “major” number. Use register chrdev.

⊲ create a buffer. Use get free pages to allocate it. When allocates using
kmalloc the driver really does not own the pages, kmalloc owns the pages, the
driver is just allowed to use the memory. This way the driver owns the space and
can do what it wants with it

⊲ create a work queue for the interrupt handler bottom half

⊲ probe for a free interrupt line or validate one manually. See IRQ probing below.

• Cleanup

⊲ Disable the interrupt

⊲ Disable the tasklet or flush scheduled work

⊲ Unmap if memory mapped (use iounmap)

⊲ release the region obtained above

⊲ free the buffer space

• File operations - see Driver-11 as an example, including the above

⊲ read

⊲ write

⊲ poll

⊲ open

⊲ release

Kernel considerations

• The kernel is limited to about 1GB of virtual and physical memory.

• The kernel’s memory is not pageable.

• The kernel usually wants physically contiguous memory.

• Often, the kernel must allocate the memory without sleeping.

• Mistakes in the kernel have a much higher cost than they do elsewhere.

• Hence: kernel memory allocation is handled by void *kmalloc(size t size, int

flags) and void kfree(const void *obj) where ’flags’ controls the behavior of
memory allocation.



Interrupts, barriers, timers

Motivation

• interrupts are necessary due to slowness of I/O compared to other CPU tasks

• barriers are needed to prevent compiler optimizations from causing unpredictable re-
sults and to ensure that reads and writes are completed before the results of those
operations are needed to be used

• timers may be used to recover from missed interrupts

Interrupts

• There are numerous but finitely many interrupt lines. Some of the lines may be shared.
See /proc/interrupts for interrupt counts and /proc/stat for a different view of the
same information.

• When an interrupt is handled a “top half” is done very quickly to set up a “bottom
half”:

⊲ top half is called on the interrupt and is quick because interrupts are disabled to
handle the event

⊲ top half sets up device data specific for the bottom half and schedules the bottom
half

⊲ bottom half is where the heavy work is done and which may be put into a work
queue or tasklet for processing while interrupts are turned on

• An interrupt can be missed - then what? Add a kernel timer that clears the state of
the module and resumes normal operations after a certain amount of time

• Interrupts can be disabled. Often, interrupts must be blocked while holding a spinlock
to avoid deadlocking the system.

Interrupt handling

• Tasklet: tasklets are a deferral scheme that you can schedule for a registered function
to run later. The top half (the interrupt handler) performs a small amount of work,
and then schedules the tasklet to execute later at the bottom half.

A given tasklet will run on only one CPU (the CPU on which the tasklet was scheduled),
and the same tasklet will never run on more than one CPU of a given processor
simultaneously. But different tasklets can run on different CPUs at the same time.

• Work queue: Work queues are a more recent deferral mechanism. Rather than
providing a one-shot deferral scheme as is the case with tasklets, work queues are a
generic deferral mechanism in which the handler function for the work queue can sleep
(not possible in the tasklet model). Work queues can have higher latency than tasklets
but include a richer API for work deferral. Deferral used to be managed by task queues
through keventd but is now managed by kernel worker threads.



Barriers:

• Write memory barrier: guarantees that all the write operations specified before the
barrier will appear to happen before all the write operations specified after the barrier
with respect to the other components of the system.

• Read memory barrier: guarantees that all the read operations specified before the
barrier will appear to happen before all the read operations specified after the barrier
with respect to the other components of the system.

• General memory barrier: guarantees that all the read and write operations speci-
fied before the barrier will appear to happen before all the read and write operations
specified after the barrier with respect to the other components of the system.

• Compiler barrier: prevents the compiler from moving the memory accesses from one
side of the barrier to the other side. This is a general barrier. The compiler barrier
has no direct effect on the CPU, which may then reorder things however it wishes.

• Lock: memory operations issued after the lock will be completed after the lock opera-
tion has completed. Memory operations issued before the lock may be completed after
the operation has completed. All lock operations issued before another lock operation
will be completed before that lock operation.

• Unlock: memory operations issued before an unlock will be completed before the
unlock operation has completed. Memory operations issued after an unlock may be
completed before the unlock operation has completed. All lock operations issued be-
fore an unlock operation will be completed before the unlock operation. All unlock
operations issued before a lock operation will be completed before the lock operation.

• Note: an unlock followed by an unconditional lock is equivalent to a full barrier, but
a lock followed by an unlock is not.

Deadlock, criteria, two-phase locking

See http://gauss.ececs.uc.edu/Courses/c4029/code/deadlock/deadlock.html for
example code - (boy meets girl, boy falls for girl, girl doesn’t)

Four conditions to hold for deadlock to occur:

1. Mutual exclusion: threads claim exclusive control of resources that they require
(e.g., a thread grabs a lock)

2. Hold-and-wait: threads hold resources allocated to them (e.g., locks that they have
already acquired) while waiting for additional resources (e.g., locks that they wish to
acquire)

3. No preemption: resources (e.g., locks) cannot be forcibly removed from threads that
are holding them

4. Circular wait: there exists a circular chain of threads such that each thread holds one
more resources (e.g., locks) that are being requested by the next thread in the chain



Prevention:

• Circular wait: provide total ordering on lock acquisition

• Hold and wait: acquire all locks at once, atomically

• No preemption: a trylock returns immediately if the lock cannot be acquired. But
livelock is possible - threads are spinning but not getting anywhere

• Mutual exclusion: use structures that do not require locking - for example, make
use of atomic instructions provided by the processor

Avoidance:

• Scheduling: use global knowledge of which locks various threads might grab

Detection and Avoidance:

• Banker’s algorithm: process requests permission to use a resource. OS tests for
safety by simulating the allocation of predetermined maximum possible amounts of
all resources. OS denies request if allocation requested is greater than the maximum
for that resource, causes a wait if the number available is less than number requested.
OS makes state check to test for possible deadlock conditions for all other pending
activities. OS denies request if deadlock is possible. Otherwise, permission is granted.

Detect and Recover:

• allow deadlocks to occasionally happen, then take action once a deadlock is detected.
This may involve killing a thread or even restarting the operating system

Two Phase Locking:

• Guarantees serializability: a transaction schedule is serializable if its resulting mem-
ory state is the same as the result of executing the transactions sequentially (that is,
without overlapping in time). A transaction is a series of memory reads and writes.

• Shared lock: a transaction acquires a shared lock in order to read an item from
memory. More than one transaction may acquire a shared lock but all transactions
intending to write to a locked item must wait until the lock is released

• Exclusive lock: only one transaction can acquire an exclusive lock for writing to a
memory item

• Two phase protocol:
expanding: locks are acquired and none are released
shrinking: locks are released and none are acquired
end of phase 1: may be determined by some synchronization or atomic commitment
point, but this is typically expensive and is often postponed until a final transaction is
executed

• Precedence graph: a directed graph representing precedence of transactions in the
schedule, as reflected by precedence of conflicting operations in the transactions

• a schedule is conflict-serializable if and only if its precedence graph of committed
transactions is acyclic

• cycles of committed transactions can be prevented by aborting at least one uncommit-
ted transaction on each cycle in the precedence graph of all the transactions



Virtual Memory

Motivation

• We want a process to think it has lots of space but we can’t afford to give that much
to it.

• So, we introduce the notion of virtual address space and a function that maps virtual
addresses to physical addresses - physical space is allocated as needed.

• To support the sharing of libraries we introduce the Procedure Linkage Table and the
Global Offset Table.

• We also segment the virtual address spaces to prevent alocating space that is not going
to be used.

• But segmentation can be expensive because a translation function is required and
because quite a bit of de-fragmentation may be necessary to satisfy requests for space.

• This last problem can be reduced by using fixed size segments called pages that are
referenced through page tables.

Demand paging

• Memory is allocated in pages, usually 4KB in size

• OS copies a disk page into memory only if an attempt is made to access it (a page
fault was raised)

• Contiguous virtual space may not translate to contiguous physical space

• To get many more users in mainstore at once

• To get better utilization of hardware

• To handle jobs bigger than mainstore

• But it costs: performance & complexity

• Relies on: temporal locality - instructions in loops repeat often

• and spatial locality - instructions execute in sequence

Components

• Caches, particularly in hardware, such as the Translation look-ahead buffer (TLB) for
faster page table access

• Slabs, for kernel objects of known size

• Multi-level page tables: cache the cache of page table entries

• Page allocator: Buddy system

• Swapper: lazy



Page fault

• If a page frame is not in memory a page fault is generated as follows:

⊲ an exception is raised - the OS handles it

⊲ the state of the process causing it is saved

⊲ it is determined that the exception was a page fault

⊲ it is determined that the address reference is valid

⊲ the location of the page on disk is found

⊲ the page is read from disk - this requires a wait to complete a seek plus some
latency

⊲ the process that raised the exception is restarted because the CPU dropped it to
act on another

⊲ the state of current I/O process is saved

⊲ the page table is updated

⊲ the state of process causing the fault is restored

⊲ the process is resumed

• Service time can be as high as 30 msec

• Memory access time is about 60 nsec - 6 orders of magnitude difference!!!

• For 10% impact on access speed we can can afford only 1 swap for every 2 million
accesses

• If there is no free frame for the request, some extra tasks are added:

⊲ a “victim” page frame is found and written to disk (if it is modified)

⊲ the free-frame table is updated

⊲ the new page is read into the frame

⊲ the page table is updated

⊲ the process is restarted and resumed



Page replacement

• If a page must be swapped out to make room for a new frame, a victim frame must be
chosen and swapped out. The following are strategies for choosing a victim:

⊲ FIFO: remove the frame that has been resident the longest subject to an anomaly:
increased frames may cause more faults!

⊲ OPT: remove the frame that will be next accessed the furthest into the future.
This cannot be achieved in any practical sense although it is OK for some appli-
cations. It is primarily used as a benchmark to test other strategies against

⊲ LRU: remove a frame that has not been used for the longest period. LRU may
be implemented using a stack: when a frame is accessed it is pulled from the stack
and placed on top, the victim frame is the one on the bottom. But this is hard
to implement efficiently so approximations are used

⊲ LRU*: approximate LRU with a single reference bit in the page table entry. The
victim is the first page with a 0 reference bit. Perhaps 0 out reference bits every
so often so a frequently accessed frame will always have its reference bit set and
it will be less likely to be swapped out

⊲ LRU+: the second chance algorithm. All pages are in a circular queue. If the
cursor points to a page with reference bit set then reset it (giving it a second
chance) and move the cursor to the next page to test again. If all reference
bits are set the one the cursor pointed to originally is the victim. This is easily
implemented in software

⊲ LRU#: expand on LRU* by adding a dirty bit. Define four classes of page:

1. dirty/ref = 0,0: pages of this class can be swapped out easily because it is
not likely that a reference will be made soon and it is not necessary to write
the page to disk

2. dirty/ref = 0,1: is similar except a write is necessary

3. dirty/ref = 1,0: probably should not be swapped out because a reference is
likely

4. dirty/ref = 1,1: certainly is last to be considered for swap

Frame allocation

• We should also be aware that every process should be granted some minimum number
of page frames or else it will be competing with itself for free pages

• Fixed Allocation: all processes get the same minimum number of free pages Some
processes get starved, some are too wealthy

• Proportional Allocation: processes get a number of pages that is proportional to
either their total size or a mix of size and priority

• Global: a victim frame may be selected from any frame, allowing one process to “steal”
from another. Performance is on a single process is non-deterministic (unpredictable)

• Local: a victim frame may be selected only from the set belonging to the evicting
process. Results in more predictable performance but throughput suffers



Thrashing:

• system condition where processes are spending more time on page faults than on useful
work

• cause: processes have not been given enough frames there are too many processes
running

• cure: based on locality

⊲ define working-set-window (WSW) as some number of instructions and define
working-set as all pages accessed within the last WSW. If the sum of all WS sizes
is greater than number of pages available then thrashing results. In that case,
suspend some jobs as needed to keep the sum less. A working set changes slowly
with time. A crude way to keep up with changes is to look at a few bits that are
updated at regular intervals and remove pages from the working set whose bits
have fallen off the table

⊲ decide on minimum and maximum allowable page fault rates per process. If a
rate falls below the minimum, remove allocated pages from the process. If the
rate rises above the maximum, add free pages to the working set

• control: page size

⊲ if page size is increased there will be fewer page faults which reduces time over-
head spent waiting for I/O to disk. But internal fragmentation will be increased.
However, smaller page size improves locality (matches locality of the process)
which reduces I/O to disk. A larger page size means smaller page tables.

Performance enhancers:

• I/O interlock (locked pages): for code required for I/O fault handling, buffers,
partially updated pages, critical kernel code, performance critical data. If, for example,
an I/O process is given an address from which to take or put data, it must make sure
the data at that address does not change for the long period of time that the I/O
process takes - note the process should itself be interruptible.

• Inverted page table: a single page table replaces one page table per process. Im-
plemented as a hash table, indexed on process and page number. These can be a lot
smaller than a collection of many page tables.

• Demand segmentation: old processors do not have hardware support for demand
paging and use demand segmentation instead

• TLB reach: the total memory that the TLB can cover is (TLB size)*(page size). If
the reach is smaller than the working set size page faults increase

⊲ solution 1: increase TLB size. But that could go out of control

⊲ solution 2: increase page size. But that has problems noted above

⊲ solution 3: allow many different page sizes. But TLBs currently are designed
to accomodate one size so this has to be worked out with chip manufacturers.
Perhaps this is why linux only has sizes 4K and 4M - the latter maintained in
software



Performance improvements:

• Copy-on-write: if multiple processes request resources which are initially indistin-

guishable they can all be given pointers to the same resource. Then if a process tries
to modify its “copy” of the resource, a separate (private) copy is made for that process
to prevent its changes from becoming visible to all others. If no process ever makes
any modifications, no private copy need ever be created.

⊲ Main use: when a process creates a copy of itself, the pages in memory that
might be modified by either the process or its copy are marked copy-on-write.
When one process modifies the memory, the kernel intercepts the operation and
copies the memory so that changes in one process’s memory are not visible to the
other.

⊲ Other use: calloc returns 0’ed memory. Initial calls return pointers to the same
page. Then, as writes are made, copies are made and pointers changed. This is
done for large callocs

⊲ Implementation: the MMU is notified that certain pages in the process’s address
space are read-only. When data is written to these pages, the MMU raises an
exception and the handler allocates new space in physical memory and makes the
page being written correspond to that new location in physical memory.

⊲ Advantage: the ability to use memory sparsely. Usage of physical memory only
increases as data is stored in it. Efficient hash tables can be implemented which
only use little more physical memory than is necessary to store the objects they
contain.

⊲ Problem: such programs run the risk of running out of virtual address space.
Virtual pages unused by the hash table cannot be used by other parts of the
program.

⊲ Problem: complexity. When the kernel writes to pages, it must copy any such
pages marked copy-on-write.

• Memory Mapped Files: a resource is read into memory using demand paging.
Reads and write are treated as ordinary memory reads and writes. Speeds up access
to the resource. Allows several processes to share access to the resource.

⊲ Problem: a 5KB resource maps to two 4KB pages, so there is some waste

⊲ Problem: when a block of data is loaded in page cache, but is not yet mapped
into the process’s virtual memory space, page faults may occur

⊲ Problem: a file larger than the addressable space can have only portions mapped
at a time, complicating reading it. An IOMMU can remedy this situation.

⊲ Advantage: a system call takes orders of magnitude longer than a memory access
(e.g. seek time and latency are eliminated)

⊲ Advantage: the mapping can be to the kernel’s page cache and therefore not
take away from user pages



Input-Output
Motivation

• Since devices are typically slow compared to CPU clock speeds, they connect to busses
other than the memory bus. Examples of such buses are Universal System Bus (USB),
Peripheral Component Interconnect (PCI), Industry Standard Architecture (ISA), AT
Attachment (ATA), Serial AT Attachment (SATA), Integrated Drive Electronics (ISE),
Small Computer System Interface (SCSI).

IO Channel

• The wire arrangement of the bus plus and the protocol it supports

• A device controller executes commands from a computer’s host controller to cause
desired actions on a device. Those commands as well as data and status to and from
devices are sent over an IO channel

• Associated with devices are logical bus addresses which are used to access registers on
device controllers

• Devices may also have data areas covering a large range of physical addresses

Memory Mapped IO

• An alternative to IO channels is memory-mapped IO where the memory and registers
of the IO devices are mapped to RAM addresses.

• When a CPU accesses what appears to be a RAM address, it is actually addressing
memory of the device.

• The same instructions used for accessing RAM are used to access device memory in
this case. It follows that such address ranges must be reserved for IO only, even if
temporarily. See DMA below.

Polling (not on)

• Mechanism to initiate an IO transfer

• A host controller may poll a status register of a device at regular intervals to determine
whether some action needs to be taken or has completed

• A poll cycle may look like this:

• The host reads the busy bit of the device controller until it’s clear

• The host writes a command in the command register and writes a byte into the
data-out register

• The host sets the command-ready bit

• The device controller sees the command-ready bit is set and sets the busy bit

• The device controller reads the command register

• The device controller performs I/O operations on the device

• If the read bit is set instead of write bit, data from the device is loaded into the
data-in register, which is read by the host

• The device controller clears the command-ready, error, and busy bit

• Polling may be OK for transfers that are known to happen in rapid succession for
example sending bytes to a printer.



Interrupts

• A device may connect direct to an interrupt request line (IRQ) on the processor to
generate an interrupt or

• while executing a function, the code jumps to an address which is the entry point of a
function for handling an interrupt

• An interrupt-driven IO cycle might look like this:

• A device driver (kernel) issues a ”read” to the device controller

• The device driver sleeps - the CPU performs other tasks

• The controller reads data into a buffer and raises an interrupt request

• The CPU reads the request and invokes the driver’s interrupt handler

• The interrupt handler reads the buffer and processes it

Direct Memory Access (DMA) (no detail is on)

• Direct Memory Access is a hardware mechanism that allows peripherals to transfer
their IO data directly to and from main memory without the need to involve the
system processor. The transfer is directly between the IO device and the memory.

• Direct Memory Access is important because it can greatly increase throughput to and
from a device, eliminating significant computational overhead

• Three matters of concern with DMA are

– Hardware support is required - but this is routinely supplied now

– DMA “steals” cycles from the processor to make the transfer - so too frequent
transfers may slow things down

– Synchronization mechanisms must be provided to avoid accessing non-updated
information from RAM - cache coherency must be preserved

• A DMA transfer cycle may look like this if initiated in software

1. Device driver allocates a DMA buffer, sends signal to device indicating where to
send the data, sleeps

2. Device writes data to DMA buffer, raises interrupt when finished

3. Device driver interrupt handler gets data from DMA buffer, acknowledges inter-
rupt, awakens software requesting data to process it

• A DMA transfer cycle may look like this if initiated from the device

1. Hardware raises an interrupt to announce that new data has arrived

2. Interrupt handler allocates a buffer, tells the hardware where to transfer the data

3. Device writes the data to the buffer, raises another interrupt when transfer is
done

4. Interrupt handler dispatches the data, awakens any relevant process, and takes
care of housekeeping



• A DMA transfer cycle may look like this if initiated with a network device (uses a ring
buffer)

1. An incoming packet is placed in the next available buffer in the ring

2. An interrupt is raised by the device

3. The device driver sends the to packet to kernel code that will process it

4. The device driver inserts a ”fresh” buffer into the ring (one whose contents has
been processed - all buffers are allocated once, during initialization)

• DMA transfers are over contiguous memory due to PCI constraints, PCI addresses are
physical, and DMA controller addresses are logical bus addresses

• There needs to be some translation from one to the other

• To ensure the buffer occupies contiguous space:

1. Use the DMA zone (lower 16MB of RAM) - works for some devices

2. Allocate upper memory at boot, use portions of that space for buffers

3. Use scatter/gather IO if possible

• Bounce buffers are created when a driver attempts to perform DMA on an address that
is not reachable by the peripheral devicea high-memory address, for example. Data
is then copied to and from the bounce buffer as needed. This could cause transfer
slowdowns.

Scatter/Gather IO (not on but you benefit from knowing)

• Scatter/Gather IO is a method of input and output by which a single procedure call
sequentially writes data from multiple buffers to a single data stream or reads data
from a data stream to multiple buffers. The buffers are given in an array of sg objects.

• Scatter/gather is particularly effective in network IO (streams)

Cache Coherency (important)

• Cache coherency is a state whereby duplicated data elements have the expected value
when they are accessed. Speed is generally improved by copying data (say from mem-
ory) to (fast) caches and operating on the caches. Modifications may cause a mismatch
between the cached and memory-resident data. Mechanisms are needed to ensure that
all copies are in sync when a read or write occurs.

Block Devices

• A block device is a data storage device that supports reading and writing data in fixed-
size blocks, sectors, or clusters. Examples are: hard drives, optical disk drives, USB
flash drives

• A block device generally requires few pins so is in a compact package and a block
device interface is easy to write.

• But a block device based on a given solid-state memory may be slower than a character
device based on the same kind of memory because:

– read: begins with a seek to the start of the block, the whole block is read including
unneeded data

– write: begins with a seek to the start of the block, the whole block is read into
memory, data is modified, seeks to the start of the block, writes the whole block
to the device.



Character Devices

• A character device supports reading and writing data one character at a time, in a
stream. Examples are: keyboard, sound card, network card, mice.

Blocking IO

• Synchronous - a process is suspended until IO is completed

• Easy to use and understand

• Insufficient for some needs, required by others

• Reduces performance and throughput, unless required

• Can use multi-threading to improve or simulate asynchronous I/O

Non-blocking IO

• IO call returns as much information as is available

• User interface, data copy (buffered I/O)

• Implemented via multi-threading

• Returns quickly with count of bytes read or written

Asynchronous IO

• A process runs while IO executes

• Sometimes can be difficult to use correctly and well

• IO subsystem signals process when IO completed

IO Protection

• User process may accidentally or intentionally attempt to disrupt normal operation via
illegal I/O instructions. Therefore

1. All IO instructions must be run in privileged mode

2. IO must be performed via system calls

3. Memory-mapped and IO port memory locations must be protected too

• This means that all I/O must be done by OS

Streams

• A stream is a full-duplex communication channel between a userlevel process and a
device driver

• A stream consists of:

– a head end to interface with the user process

– a driver end to interface with the device

– zero or more stream modules between them

• Each stream module contains a read queue and a write queue Message passing is used
to communicate between queues

• Stream IO is asynchronous, except when the user process communicates with the
stream head



IO Performance

• IO performance may be improved by doing one or more of the following:

– Reduce number of context switches

– Reduce data copying (e.g. use scatter/gather)

– Reduce interrupts by using large transfers, smart controllers, polling

– Use DMA to increase concurrency

– Balance CPU, memory, bus, and IO performance for highest throughput

– Reduce number of opens/closes, setup/teardown, etc.



File Systems

Motivation

• It is hard to imagine an operating system without file system support

Typical file operations

• create - find space and add an entry to the directory

• write data at current file position pointer location and update pointer

• read file contents at pointer location, update pointer

• reposition the cursor within the file (seek) change cursor location

• delete - free space and remove entry from directory

• truncate delete data starting at cursor

Access methods

Files occupy some number of blocks of space on the medium in which they reside. Those
blocks may or may not be contiguous. Every byte has a location in the file: the offset in
bytes from the beginning of the file. Every byte has a location on its medium. If a file is
on a hard drive a location is specified by a cyclinder, sector, and offset.

• Sequential - information is processed in order. Sequential reads are easy as long as the
location of the next block is known.

• Direct (aka Relative) - a file consists of fixed size records, indexed in some given order.
Some algorithm must be applied to locate a record if the blocks are not contiguous in
the medium containing the file (which is usually the case).

• Indexed sequential - a small master index points to disk blocks of a secondary index
the records of which point to the actual file records. The file is kept sorted on a defined
key. A binary search of the master index provides the block number of the secondary
index and is used to locate a particular item.

Directory structure

A flat directory structure may be fine if the number of files in a file system is very small
but in current use flat structures are extraordinarily inefficient. All file systems have a
root (top) directory.

• Tree - directories contain files and other directories. A file system object (file or
directory) contained in a directory is a descendant of that directory. A directory
containing a file object is an ancestor of that object. If A is an ancestor of B and B

is an ancestor of C then A is an ancestor of C (transitive property). The descendant
relation is also transitive. If A is an ancestor of B there is a sequence A, x1, x2, ...,
xN , B such that A is an ancestor of x1, xN is an ancestor of B and for all 1 ≤ i < N ,
xi is an ancestor of xi+1. If A is the root directory then this sequence is a path to B

and is written /A/x1/x2/.../xN/B. In a tree structure no file object has two different
ancestors and the path to a file object is unique. A tree structure supports searched
more efficiently because they typically originate in a directory that is many ancestors
removed from the root. Listing the contents of a directory is usually quick because a
directory usually contains a small number of file system objects - it is also easier for a
human to understand the contents of a directory if it is properly organized.



• DAG - there may be more than one path to a file system object but no path contains
the same file system object more than once. A DAG structure may be achieved through
hard and soft links (see inodes notes below for the difference). With DAGs it is possible
to share directories between users. It is also possible to alias files (this could be good
or bad).

• Graph - any type of path is allowed including one that contains a file system object
more than once. This could present problems which searching as search is inherently
a recursive process. However, by marking visited directories, a backtrack mechanism
can easily be implemented that avoids visiting the same directory twice - an example
is known as depth-first search.

Network file systems

• Allow sharing of files across computers and across users.

• Protocols to support this type of file system are designed based on balancing the
following considerations:

1. Simplicity and extendibility

2. Efficiency - low overhead, low latency due to the protocol

3. Failure recovery - many types of failures to worry about compared to file system
manipulation on one computer. For example, how does the file system recover
after a network interruption?

4. Consistency semantics - how users are to access shared files. For example, should
changes due to writes to an open file be visible immediately to all users who are
also looking at that file? Should the protocol support immutable shared files?

File system implementation

• Operating system provides an interface for the applications programmer (e.g. open,
close, seek, etc.)

• A device driver is used for the bulk transfer of data - typically one or more logical
blocks at a time

• A volume control block is contained in a file system and provides information about
it. For example, in linux ext4 file system the control block contains: volume name, di-
rectory last mounted on, ID, magic number, revision #, features, flags, default mount
options, current state, errors behavior, inode count, block count, reserved block count,
free blocks, free inodes, first block, block size, fragment size, reserved GDT blocks,
blocks per group, gragments per group, inodes per group, inode blocks per group, flex
block group size, time created, last mount time, last write time, mount count, max
mount count, date last checked, check interval, lifetime writes (mine has 1369 GB!),
reserved blocks uid, reserved blocks gid, first inode, inode size, required extra isize,
desired extra isize, journal inode, first orphan inode, default directory hash, direc-
tory hash seed, journal backup, journal features, journal size, journal length, journal
sequence, journal start.

• Some of the space used by a file system is allocated for file-specific information such as
creation time, time last modified, one or more pointers to blocks that contain pieces
of the file. This is called a file control block.

• A file system may have a boot control block which contains information needed to boot
the operating system



File system layers

Layering the file system support code is useful for reducing complexity and redundancy,
but it adds overhead and can decrease performance. It also enables the easy introduction
of new file systems and types. For example, in addition to the normal, journaled file
system for hard drives an OS may support a network file system, or a file system that
automatically encrypts and decrypts when reads and writes are executed. The proc file
system is a rather bizarre one compared to conventional file systems in that it enables a
user to directly control kernel functions and check the status of the kernel.

• Device - hardware such as hard drive, flash drive, network card, and so on

• IO Control - device drivers provide the link between the hardware and the software.
The operating system performs many difficult operations under the hood to facilitate
portable code that may be useful for many applications.

• Basic file system - routines that perform the difficult operations mentioned above. A
simple example is the translation of a logical address to a physical hard drive location.
This function may partially be implemented in the device controller.

• File organization - takes care of higher-level aspects of a file system such as free space
management and disk allocation.

• Logical file system - the API presented to the applications programmer and manages
access control.

File system organization: FAT

The FAT (file allocation table) file system format was used in TOS (Atari ST), MSDOS
and even Windows 9X in the 1980s and into the 1990s. It is still used for USB flash
drives because it is understood by just about all operating systems.

• Boot sector (0x0000 - 0x01FF) - Jump instruction, OEM name, BIOS parameter block,
Signature

• Directory table - a file that corresponds to the contents of a particular directory, each
being described in a 32 byte directory entry.

• Directory entry - 14 bytes for a name and attributes, 2 bytes each for create time,
create date, last access date, file access rights, last modified time, last modified date,
2 bytes for first cluster occupied by the file (see FAT), 4 bytes for the size of the file in
bytes. An example entry for a regular non-executable file named HOWDY of 15999 bytes
(0x3E7F) beginning at cluster 0x42 allowing owner to read/write but all others to just
read, excluding the time and date fields which are shown dotted, is the following:

HOWDY 0x00 .. .. .. 0x0AAD .. .. 0x0042 0x0003E7F

• FAT - usually two of these are present. A FAT contains a list of entries that map to
each cluster (4 sectors or 2KB) on the volume. Each entry records one of the following:
the cluster number of the next cluster in a linked list of cluster numbers indicating file
position; a special end of cluster-chain (EOC) entry that indicates the end of the linked
list; a special entry to mark a bad cluster; a zero to note that the cluster is unused.
Each entry in a FAT corresponds to a cluster in the filesystem. Thus a linked list
corresponding to a file (say HOWDY) whose data is found in clusters 0x42, 0x44, 0x46,
0x47 (in that order) might look like this where entry 0x44 represents cluster 0x42:

... 0x44 0x81 0x46 0x05 0x47 0x00 0x67 ...



File system organization: Unix

Linux uses inodes, superblocks and dentry objects to support file system manipulations

• inode - data structure that represents a file or directory. Includes data about the size,
permission, ownership, and location on disk of the file or directory. For discussion,
an inode holds a series of 13 pointers from which all blocks of a file may be accessed
(several inode variants use different numbers of pointers and the exam will state the
numbers to use should this be examined). The first 10 pointers directly indicate a
block which contains file data. The 11th pointer references an index structure with 10
pointers that directly reference the next 10 blocks of the file’s data. The 12th pointer
references an index structure with 10 pointers each pointing to an index structure with
10 pointers that directly reference a file’s data blocks. The 13th pointer references an
index structure with 10 pointers referencing 10 index structures each with 10 pointers
referencing index structures, each with 10 pointers referencing a file’s data blocks.
This is illustrated in the diagram below for a file occupying 36 blocks. Thus, whereas
the there is a linear search required to locate a byte in a FAT file system, the search
required with an inode is linear.

File info

inode

File Blocks
✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

Index Structure

Index Structure

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

Index Structure

✲

✲

✲

✲

✲

✲

Index Structure

✲

✲

✲



• superblock - this is the volume control block for unix and its contents is shown in the
File System Implementation section.

• dentry - an object with a string name, a pointer to an inode, and a pointer to the
parent dentry. The picture below shows two dentries pointing to the same inode. In
this case the files HOWDY and DOODY are said to be hard linked.

HOWDY

dentry

DOODY

dentry

inode
P

P
P
P
P

P
P
P
P

P
Pq

✏
✏
✏
✏
✏

✏
✏
✏
✏

✏
✏✶

A symbolic link is a special file type whose data part carries a path to another file.
The OS recognizes the data as a path, and redirects opens, reads, and writes so that,
instead of accessing the data within the symbolic link file, they access the data in the
file named by the link file. The picture below shows this - the symbolic link HOWDY

opens the file DOODY via redirection when it is accessed.

HOWDY

dentry

DOODY

dentry

inode

inode

P
P
P
P
P

P
P
Pq

P
P
P
P
P

P
P
Pq

File Block

✲ Path to DOODY

❄

redirected at open(), read(), etc.



Performance

• See slides 33, 34, 40, 41 of chapter “File System Implementation”

Disk scheduling

The goal of the operating system with respect to disk access to minimize service time
by using hardware most efficiently.

• Time factors in reading (or writing) a disk sector are:

1. seek time - the time for the disk are to move the heads to the cylinder containing
the desired sector.

2. rotational latency - the additional time waiting for the disk to rotate the desired
sector to the disk head.

3. transfer time - time to read data and move it to the system

• Schedule reads and writes to minimize seek time

• do this by minimizing seek distance

• a reasonably busy system or disk can have a significant impact on time

• scheduling can be done by the system, the disk, or both

• Algorithms

• First-come-first-served (FCFS) - serve disk read/write requests in the order in
which they arrive. This is simple, fair, with acceptable performance if utilization
is low. But it may result in excessive arm movement.

• Shortest-seek-time-first (SSTF) - the request chosen to be serviced next is the
one closest to the current head position. This could result in starvation if new
requests are for head positions close to the current position. An SSTF schedule
can be a considerable improvement over FCFS, but it is not optimal due to the
possibility of starvation.

• SCAN - The disk arm starts at one end of the disk, and moves toward the other
end, servicing all possible requests along the way, then moves back toward the
other end of the disk, doing the same. A SCAN scheduler can result in uneven
service time - this is analogous to a windshield wiper - more raindrops are present
near the ends of travel than in the middle of the windshield. No starvation for
this scheduler.

• C-SCAN - scans and services only while the arm is going in one direction. When
the arm reaches the end it is moved to the other side of the disk without servicing
anything and then resumes a service sweep. A more uniform service time is
provided by this scheduler.

• LOOK - like SCAN but the arm reverses direction when it services the last request
while moving in the current direction.

• C-LOOK - like C-SCAN but the arm reverses direction when it services the last
request while moving in the current direction.

• Performance depends on the number and types of requests.

• Requests for disk service can be influenced by the file-allocation method.

• The disk-scheduling algorithm should be written as a separate module of
the operating system, allowing it to be replaced with a different algorithm if
necessary.

• Either a modified SSTF (to prevent starvation) or LOOK is a reasonable choice
for the default algorithm



RAID

Use of multiple disk drives provides reliability via redundancy and may also improve
performance. Several improvements in disk-use techniques involve the use of multiple
disks working cooperatively

• Disk striping - uses multiple disks as one drive. Each data word is split into pieces,
possibly as small as a bit, and the pieces go on different drives. If the failure rate for
a disk is r and the failure rate for a stiped set of n disks is 1− (1− r)n ≈ n ∗ r since
one disk failure means total failure.

• Mirroring - keep a duplicate copy of a disk or stiped set. If r is the failure rate for a
disk or stiped set, then r2 is the failure rate for the set plus a mirrored set. If there
are n mirrors then the failure rate is r(n+1).

• RAID levels

• Level 0 non-redundant striping. Data is spread across all disks. There is no
redundancy.

• Level 1 mirroring. All disks are duplicated.

• Level 2 memory-style error correction (Hamming) organization. Store two or
more extra bits to detect and correct errors.

• Level 3 bit interleaved parity organization. All parity bits are on one disk. There
is no striping of data disks.

• Level 4 block interleaved parity organization. All parity bits are on one disk.
Data is spread across n disks.

• Level 5 block interleaved distributed parity. Parity bits and data are spread
across all disks.

• Level 6 P + Q redundancy where P,Q ∈ {0, 1}. Stores extra parity to protect
against multiple failures.


