20-CS-4003-001 Organization of Programming Languages Fall 2017

Lambda calculus, Type theory, Formal semantics, Program analysis

    Prev     Next     All lectures           Code

Stream Operations

;; Utilities for controlling streams

;; A stream is a cons pair - the car of the pair is
;; a token the cdr of the pair is a thunk.  Execution
;; of the thunk results in a stream that is identical
;; to the original minus the first token.

;; The following are procedures that build streams
;; of various kinds

;; build an infinite stream of increasing numbers
(define int-stream-builder$
  (lambda (n)
    (cons n
          (lambda ()
            (int-stream-builder$ (+ n 1))))))

;; build an infinite stream of random numbers uniformly
;; distributed between 0 and n
(define int-random-stream-builder$
  (lambda (n)
    (cons (random n)
          (lambda ()
            (int-random-stream-builder$ n)))))

;; build an infinite stream of non-monotonically
;; increasing numbers that are always the same,
;; invocation after invocation
(define predictable-stream-builder$
  (lambda (n m)
    (cons n
          (lambda ()
               (modulo (* n n) m) m)))))

;; a finite stream of numbers decreasing to 1
(define int-finite-stream$
  (lambda (n)
    (if (zero? n)
        (if (= n 1)
            (cons 1 (lambda () '()))
            (cons n
                  (lambda ()
                    (int-finite-stream$ (- n 1))))))))

;;  The following are stream operations

;; splice stream S$ onto finite stream X$ - see
;; examples below
(define splice$
  (lambda (X$ S$)
    (if (null? X$)
        (if (null? ((cdr X$)))
            (cons (car X$) (lambda () S$))
            (cons (car X$)
                  (lambda ()
                    (splice$ ((cdr X$)) S$)))))))

;; merge two increasing streams
(define merge$
  (lambda (S1$ S2$)
    (if (null? S1$)
        (if (null? S2$)
            (if (< (car S1$) (car S2$))
                (cons (car S1$)
                      (lambda ()
                        (merge$ ((cdr S1$)) S2$)))
                (cons (car S2$)
                      (lambda ()
                        (merge$ S1$ ((cdr S2$))))))))))

;; multiply all tokens of a stream S$ by a given number m
(define times$
  (lambda (m S$)
    (if (null? S$)
        (cons (* m (car S$))
              (lambda ()
                (times$ m ((cdr S$))))))))

;;  The following are stream interrogation operations

;; take the first n tokens of a stream or list S
;; and put them in a list.
(define take
  (lambda (n S)
    (if (or (null? S) (= n 0))
        (if (and (not (null? (cdr S)))e
                 (procedure? (cdr S)))
            (cons (car S)
                  (take (- n 1) ((cdr S))))
            (cons (car S)
                  (take (- n 1) (cdr S)))))))

;; Return a stream that computes the tokens of stream
;; S$ minus the first n tokens.
(define take$
  (lambda (n S$)
    (if (null? S$)
        (if (or (= n 0) (null? (cdr S$)))
            (take$ (- n 1) ((cdr S$))))))e)

;;  The following are stream examples

(define s0 (int-stream-builder$ 1))

(define s1 (int-random-stream-builder$ 10000))

(define s1
    (cons 1 (lambda () (cons 2 (lambda () '()))))
    (cons 3 (lambda () (cons 4 (lambda () '()))))))

(define s2
    (cons 1 (lambda () (cons 2 (lambda () '()))))

(define s3
    (cons 1 (lambda () (cons 2 (lambda () '()))))))

(define s4
    (cons 1 (lambda () (cons 2 (lambda () '()))))
    (int-random-stream-builder$ 10000)))

(define s5 (take 10 s1))
(define s6 (take 10 s2))
(define s7 (take 10 s3))
(define s8 (take 10 s4))

(define s9
  (take 20
        (merge$ (times$ 3 (int-stream-builder$ 1))
                (times$ 5 (int-stream-builder$ 1)))))
 -  To the left are several stream builders and manipulation utilities that are used on numerous slides, particularly slides in this sequence.