Complexity

Objective: Check the feasibility of using an algorithm for solving a particular class of problem
Complexity

Objective: Check the feasibility of using an algorithm for solving a particular class of problem

Types: Worst case - no input does any worse than this
 Average case - average performance
Complexity

Objective: Check the feasibility of using an algorithm for solving a particular class of problem

Types: Worst case - no input does any worse than this

Average case - average performance

Input Size: Say number of cities or cables, etc. \((n,m)\)
Complexity

Objective: Check the feasibility of using an algorithm for solving a particular class of problem

Types: Worst case - no input does any worse than this

Average case - average performance

Input Size: Say number of cities or cables, etc. \((n,m)\)

Measure: Some key operation determining behavior, as a function of input size
Complexity

Objective: Check the feasibility of using an algorithm for solving a particular class of problem

Types: Worst case - no input does any worse than this
 Average case - average performance

Input Size: Say number of cities or cables, etc. \((n,m)\)

Measure: Some key operation determining behavior, as a function of input size

Limit: Find a bound on the number of operations, in the limit, as \(n \rightarrow \infty\)
Complexity

Example: Given an array of integers in no particular order, find the maximum integer in the array.
Complexity

Example: Given an array of \texttt{ints} in no particular order, find the maximum \texttt{int} in the array.

Algorithm: examine by increasing index, save the largest seen so far
Complexity

Example: Given an array of ints in no particular order, find the maximum int in the array.

Algorithm: examine by increasing index, save the largest seen so far

```c
int findmax(int *elem, int n) {
    int index = 0;
    if (n < 1) return -1;
    int maxnum = elem[0];
    for (int i=0 ; i < n ; i++) {
        if (elem[i] > maxnum) {
            maxnum = elem[i];
            index = i;
        }
    }
    return index;
}
```
Complexity

Operation: Dominating operation is >

Input Size: Number of elements in array

Complexity:

```c
int findmax(int *elem, int n) {
    int index = 0;
    if (n < 1) return -1;
    int maxnum = elem[0];
    for (int i=0 ; i < n ; i++) {
        if (elem[i] > maxnum) {
            maxnum = elem[i];
            index = i;
        }
    }
    return index;
}
```
Complexity

Operation: Dominating operation is >

Input Size: Number of elements in array

Complexity: $O(n)$ – both worst, average case

```c
int findmax(int *elem, int n) {
    int index = 0;
    if (n < 1) return -1;
    int maxnum = elem[0];
    for (int i=0 ; i < n ; i++) {
        if (elem[i] > maxnum) {
            maxnum = elem[i];
            index = i;
        }
    }
    return index;
}
```
Complexity

Example: Given an array of ints in no particular order, and an int \(x \), find the first matching \(x \).

Algorithm: examine by increasing index, return array index when a match is found

```
int findint(int *elem, int n, int x) {
    if (n < 1) return -1;
    for (int i=0 ; i < n ; i++) {
        if (elem[i] == x) return i;
    }
    return -1;
}
```
Complexity

Operation: Dominating operation is >

Input Size: Number of elements in array

Complexity: $O(n)$ – both worst, average case

```c
int findint(int *elem, int n, int x) {
    if (n < 1) return -1;
    for (int i=0 ; i < n ; i++) {
        if (elem[i] == x) return i;
    }
    return -1;
}
```
Complexity

Example: Given an array of ints in increasing order, find an int matching a given x.

Algorithm: binary search

```c
int binsearch(int *elem, int f, int l, int x) {
    while (f <= l) {
        int index = (f+l)/2;
        if (x == elem[index]) return index;
        if (x < elem[index]) l = (f+l)/2-1;
        else f = (f+l)/2+1;
    }
    return -1;
}
```
Complexity

Operation: Dominating operations are > and ==

Input Size: Number of elements in array

Complexity: $O(lg(n))$ – How to get this?
Complexity – worst case

Before starting, max number compares to do is n
Complexity – worst case

Before starting, max number compares to do is n
After 1 iteration, max number compares left = $n/2$
Complexity – worst case

Before starting, max number compares to do is n

After 1 iteration, max number compares left $= n/2$

After 2^{nd} iteration, max number compares left $= n/4$
Complexity – worst case

Before starting, max number compares to do is n

After 1 iteration, max number compares left = $n/2$

After 2nd iteration, max number compares left = $n/4$

After 3rd iteration, max number compares left = $n/8$

...
Complexity – worst case

Before starting, max number compares to do is n

After 1 iteration, max number compares left = $n/2$

After 2nd iteration, max number compares left = $n/4$

After 3rd iteration, max number compares left = $n/8$

...$

After i iterations, max number compares left = $n/2^i$

...
Complexity – worst case

Before starting, max number compares to do is n
After 1 iteration, max number compares left = $n/2$
After 2nd iteration, max number compares left = $n/4$
After 3rd iteration, max number compares left = $n/8$
...
After i iterations, max number compares left = $n/2^i$
...
After how many iterations is there when one compare left?
Complexity – worst case

Before starting, max number compares to do is n
After 1 iteration, max number compares left $= n/2$
After 2nd iteration, max number compares left $= n/4$
After 3rd iteration, max number compares left $= n/8$
...
After i iterations, max number compares left $= n/2^i$
...
After how many iterations is there when one compare left?

Answer: when $1 = n/2^i$, or when $0 = \lg(n) - i$
Complexity – average case

Let X be a random integer variable,

Let $Pr(X=i)$ denote the probability that X has the value i.

Then $E\{X\} = Pr(X=1) + Pr(X=2) \times 2 + Pr(X=3) \times 3 + ...$
Complexity – average case

Assume one we look for is in the array
Complexity – average case

Assume one we look for is in the array

Probability(land on it, 1st iteration) = 1/n
Complexity – average case

Assume one we look for is in the array

Probability(land on it, 1st iteration) = \frac{1}{n}

Probability(land on it, 2nd iteration) = \frac{1}{(n/2)}
Complexity – average case

Assume one we look for is in the array

Probability(land on it, 1st iteration) = 1/n
Probability(land on it, 2nd iteration) = 1/(n/2)
Probability(land on it, 3rd iteration) = 1/(n/4)
Complexity – average case

Assume one we look for is in the array
Probability(land on it, 1st iteration) = 1/n
Probability(land on it, 2nd iteration) = 1/(n/2)
Probability(land on it, 3rd iteration) = 1/(n/4)

Hence average number compares =

\((1/n)*1 + (2/n)*2 + (4/n)*3 + (8/n)*4 + \ldots + (2^{\log(n)-1}/n)*\log(n)\)
Complexity – average case

\[
\frac{1}{n} + \frac{2}{n} + \frac{4}{n} + \frac{8}{n} + \ldots + \frac{(n/2)}{n} + \\
\frac{2}{n} + \frac{4}{n} + \frac{8}{n} + \ldots + \frac{(n/2)}{n} + \\
\frac{4}{n} + \frac{8}{n} + \ldots + \frac{(n/2)}{n} + \\
\ldots \\
+ \frac{(n/2)}{n}
\]
Complexity – average case

\[
\frac{1}{n} + \frac{2}{n} + \frac{4}{n} + \frac{8}{n} + \ldots + \frac{(n/2)}{n} + \frac{2}{n} + \frac{4}{n} + \frac{8}{n} + \ldots + \frac{(n/2)}{n} + \frac{4}{n} + \frac{8}{n} + \ldots + \frac{(n/2)}{n} + \ldots + \frac{(n/2)}{n}
\]

But

\[
1 + 2 + 4 + 8 + \ldots + n = 2n - 1
\]

\[
1 + 2 + 4 + 8 + \ldots + \left(\frac{n}{2}\right) = n - \frac{1}{2}
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>
Complexity – average case

\[\frac{1}{n} + \frac{2}{n} + \frac{4}{n} + \frac{8}{n} + ... + \frac{(n/2)}{n} + \]
\[\frac{2}{n} + \frac{4}{n} + \frac{8}{n} + ... + \frac{(n/2)}{n} + \]
\[\frac{4}{n} + \frac{8}{n} + ... + \frac{(n/2)}{n} + \]
\[
\]
\[... \]
\[+ \frac{(n/2)}{n} \]

But

\[
\begin{array}{c|c}
 n & \text{sum} \\
1 & 1 \\
2 & 3 \\
4 & 7 \\
8 & 15 \\
\end{array}
\]

\[1 + 2 + 4 + 8 + ... + \frac{(n/2)}{n} = n - \frac{1}{2} \]

\[2 + 4 + 8 + ... + \frac{(n/2)}{n} = n - 1 \]

\[4 + 8 + ... + \frac{(n/2)}{n} = n - 2 \]

\[8 + ... + \frac{(n/2)}{n} = n - 4 \]
Complexity – average case

\[
\frac{1}{n} + \frac{2}{n} + \frac{4}{n} + \frac{8}{n} + \ldots + \frac{(n/2)}{n} + \\
\frac{2}{n} + \frac{4}{n} + \frac{8}{n} + \ldots + \frac{(n/2)}{n} + \\
\frac{4}{n} + \frac{8}{n} + \ldots + \frac{(n/2)}{n} + \\
\vdots + \frac{(n/2)}{n}
\]

So

\[
(1 - \frac{1}{2n}) + (1 - \frac{1}{n}) + (1 - \frac{2}{n}) + (1 - \frac{4}{n}) + \ldots + 1 \\
= \lg(n) - 1 = O(\lg(n))
\]
Complexity

Example: Insertion sort

```c
void insertSort(int *array_beg, int *array_end) {
    int i;
    if (array_beg == array_end) return;
    insertSort(array_beg+1, array_end);
    insert(array_beg, array_end);
}

void insert(int *first, int *last) {
    int *ptr, a = *first;
    for (ptr = first+1 ; ptr != last ; ptr++) {
        if (*ptr > a) {
            *(ptr-1) = a;
            return;
        }
        *(ptr-1) = *ptr;
    }
    if (*ptr > a) *(ptr-1) = a;
    else {
        *(ptr-1) = *ptr;
        *ptr = a;
    }
}
```
Complexity

Complexity of insert: List of i elements: $O(i)$

Complexity of insertion sort:

Let $T(n)$ be the complexity on a list of n elements
Complexity

Complexity of insert: List of i elements: $O(i)$

Complexity of insertion sort:

Let $T(n)$ be the complexity on a list of n elements

$$T(n) = T(n-1) + n; \quad T(1)=1$$
Complexity

Complexity of insert: List of \(i \) elements: \(O(i) \)

Complexity of insertion sort:

Let \(T(n) \) be the complexity on a list of \(n \) elements

\[
T(n) = T(n-1) + n; \quad T(1) = 1
\]

\[
T(1) = 1
\]

\[
T(2) = T(1) + 2
\]

\[
T(3) = T(2) + 3
\]

\[
T(4) = T(3) + 4
\]

...

\[
T(n) = T(n-1) + n
\]
Complexity

Complexity of insert: List of i elements: $O(i)$

Complexity of insertion sort:

Let $T(n)$ be the complexity on a list of n elements.

$$T(n) = T(n-1) + n; \ T(1)=1$$

- $T(1) = 1$
- $T(2) = T(1) + 2$
- $T(3) = T(2) + 3$
- $T(4) = T(3) + 4$

... ...

- $T(n) = T(n-1) + n$

$$T(n) = 1+2+3+4+\ldots+n = n(n-1)/2$$
Complexity - average

Complexity of insert: List of i elements: $i/2$

Complexity of insertion sort:

Let $T(n)$ be the average complexity on a list of n elements

$$T(n) = T(n-1) + n/2; \quad T(1) = 1$$

$$T(1) = 1$$
$$T(2) = T(1) + 1$$
$$T(3) = T(2) + 1.5$$
$$T(4) = T(3) + 2$$

...$

$$T(n) = T(n-1) + n/2$$

$$T(n) = (1+2+3+4+...+n)/2 = n(n-1)/4$$
Complexity

Example: Mergesort

```c
void mergesort (int *A, int f, int l) {
    if (f >= l) return;
    mergesort(A, f, (f+l)/2);
    mergesort(A, (f+l)/2+1, l);
    merge(A, f, (f+l)/2, l);
}
```

```c
void merge(int *A, int f, int mid, int l) {
    int temp[n], f1=f, l1=mid, f2=mid+1, l2 = l;
    int i;
    for (i=f1; f1 <= l1 && f2 <= l2; i++) {
        else temp[i] = A[f2++];
    }
    for ( ; f1 <= l1 ; f1++, i++) temp[i] = A[f1];
    for ( ; f2 <= l2 ; f2++, i++) temp[i] = A[f2];
    for (i=f ; i <= l ; i++) A[i] = temp[i];
}
```
Complexity

Complexity of merge: If both lists together have \(i \) elements, the complexity of merge is \(O(i) \)

Complexity of mergesort:
Let \(T(n) \) be the complexity on a list of \(n \) elements
Complexity

Complexity of merge: If both lists together have i elements, the complexity of merge is $O(i)$

Complexity of mergesort: Let $T(n)$ be the complexity on a list of n elements

$$T(n) = 2T(n/2) + n \; ; \; T(1) = 1$$
Complexity

Complexity of merge: If both lists together have \(i \) elements, the complexity of merge is \(O(i) \)

Complexity of mergesort:
Let \(T(n) \) be the complexity on a list of \(n \) elements

\[
T(n) = 2T(n/2) + n ; T(1) = 1
\]

\[
T(1) = 1 \\
T(2) = 2T(1) + 2 \\
T(4) = 2T(2) + 4 \\
T(8) = 2T(4) + 8 \\
\]

\[
\ldots
\]

\[
T(2^{\lg(n)}) = 2T(2^{\lg(n)-1}) + 2^{\lg(n)}
\]
Complexity

\[T(1) = 1 \]
\[(T(2) = 2T(1) + 2)/2 \]
\[(T(4) = 2T(2) + 4)/4 \]
\[(T(8) = 2T(4) + 8)/8 \]

\[\ldots \]
\[(T(2^{\lg(n)}) = 2T(2^{\lg(n)-1}) + 2^{\lg(n)})/2^{\lg(n)} \]
Complexity

\[T(1) = 1 \]
\[(T(2) = 2T(1) + 2)/2 \]
\[(T(4) = 2T(2) + 4)/4 \]
\[(T(8) = 2T(4) + 8)/8 \]

...

\[(T(2^{\log(n)}) = 2T(2^{\log(n)-1}) + 2^{\log(n)})/2^{\log(n)} \]

so

\[T(2^{\log(n)})/2^{\log(n)} = 1 + 1 \ldots + 1 \]

\[T(n) = \log(n) \cdot n \]
Average Complexity

Let $T(n)$ be the average time to sort n numbers.
Let X_n be the number of compares in a merge of two $n/2$ size lists.
Average Complexity

Let $T(n)$ be the average time to sort n numbers.

Let X_n be the number of compares in a merge of two $n/2$ size lists.

X_n could be as low as $n/2$ and as high as n.

<table>
<thead>
<tr>
<th>1 2 3 4</th>
<th>6 7 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 6 8</td>
<td>3 4 7 9</td>
</tr>
</tbody>
</table>
Average Complexity

Let $T(n)$ be the average time to sort n numbers. Let X_n be the number of compares in a merge of two $n/2$ size lists. X_n could be as low as $n/2$ and as high as n.

Successive dots represent successively larger numbers in both lists. Color of dot is the list the number is in. First color change from the right determines number of compares: e.g. $X_{14} = 13-2$ above.
Average Complexity

Let $T(n)$ be the average time to sort n numbers.

Let X_n be the number of compares in a merge of two $n/2$ size lists.

X_n could be as low as $n/2$ and as high as n.

Successive dots represent successively larger numbers in both lists.
Color of dot is the list the number is in. First color change from the right determines number of compares: e.g. $X_{14} = 13-2$ above.

Hence $Pr(X_n = n-x) = \binom{n-x-1}{n/2-1}/\binom{n}{n/2} = \frac{(n-x-1)!(n/2)!(n/2)!}{n!(n/2-1)!(n/2-x)!} \approx 2^{-x}$

$E\{X_n\} = \sum_{1\leq x \leq n/2} (n-x)2^{-x} = n -1/2 -2/4 -3/8 -4/16 -... = n-2$
Average Complexity

\[T(n) = 2T(n/2) + E\{X_n\} ; \quad T(1) = 1 ; \quad T(2) = 1 \]
Average Complexity

\[T(n) = 2T(n/2) + E\{X_n\} \ ; \ T(1) = 1 \ ; \ T(2) = 1 \]

\[T(n) = 2T(n/2) + n - 2 \]
Average Complexity

\[T(n) = 2T(n/2) + E\{X_n\} ; T(1) = 1 ; T(2) = 1 \]

\[T(n) = 2T(n/2) + n - 2 \]

\[T(1) = 1 \]
\[T(2) = 1 \]
\[T(4) = 2T(2) + 2 \]
\[T(8) = 2T(4) + 6 \]

\[\ldots \]
\[T(2^{\lg(n)}) = 2T(2^{\lg(n)-1}) + 2^{\lg(n)} - 2 \]
Average Complexity

\[T(n) = 2T(n/2) + E\{X_n\} \ ; \ T(1) = 1 \ ; \ T(2) = 1 \]

\[T(n) = 2T(n/2) + n - 2 \]

\[T(1) = 1 \]
\[T(2) = 1 \]
\[T(4) = 2T(2) + 2 \]
\[T(8) = 2T(4) + 6 \]

...

\[T(2^{\lg(n)}) = 2T(2^{\lg(n)-1}) + 2^{\lg(n)} - 2 \]

\[T(2^{\lg(n)})/2^{\lg(n)-1} = 2+(2-1)+(2-.5)+(2-.25)+(2-.125)+...+2-(2/n) \]
\[= 2*\lg(n) - 2 + 2/n \]
Average Complexity

\[T(n) = 2T(n/2) + E\{X_n\} \ ; \ T(1) = 1 \ ; \ T(2) = 1 \]

\[T(n) = 2T(n/2) + n - 2 \]

\[T(1) = 1 \]
\[T(2) = 1 \]
\[T(4) = 2T(2) + 2 \]
\[T(8) = 2T(4) + 6 \]

... \]

\[T(2^{\lg(n)}) = 2T(2^{\lg(n)-1}) + 2^{\lg(n)} - 2 \]

\[T(2^{\lg(n)})/2^{\lg(n)-1} = 2+(2-1)+(2-.5)+(2-.25)+(2-.125)+...+2-(2/n) \]
\[= 2*\lg(n) - 2 + 2/n \]

\[T(n) = n*(\lg(n)-1) + 1 \]
Complexity

Quicksort:

```c
void partition(int *A, int f, int l, int *piv_idx){
    int pivot = A[f], last = f, first;
    for (first=f+1 ; first <= l ; first++) {
    }
    swap(&A[f], &A[last]);
    *piv_idx = last;
}

void Quicksort(int *A, int f, int l) {
    int pivot_index;
    if (f >= l) return;
    if (f >= l) return;
    partition(A, f, l, &pivot_index);
    Quicksort(A, f, pivot_index-1);
    Quicksort(A, pivot_index+1, l);
}```
Complexity

Quicksort worst case:

Let $T(n)$ denote the worst case time for Quicksort

\[ T(n) = 1 + T(n-1) + n; \quad T(1) = 1 \]

\[

t(1) = 1 + 1 \\
T(2) = 1 + T(1) + 2 \\
T(3) = 1 + T(2) + 3 \\
T(4) = 1 + T(3) + 4 \\
\ldots \\
T(n) = 1 + T(n-1) + n
\]

Hence

\[
1 + 1 + \ldots + 1 + 1 + 2 + 3 + 4 + \ldots + n = n + n(n-1)/2
\]
Average Complexity

General case:
Let $T(n)$ denote the average case time for an algorithm
Let $E(0), E(1), \ldots, E(n-1)$ be a sequence of possible first outcomes in running the algorithm and let $T(E(0)), T(E(1)), \ldots, T(E(n-1))$ be the average times given the indicated event.

Then $T(n) = T(E(0)) \cdot Pr(E(0)) + T(E(1)) \cdot Pr(E(1)) + \ldots T(E(n-1)) \cdot Pr(E(n-1))$
Average Complexity

Example:

<table>
<thead>
<tr>
<th>Group</th>
<th>Scores</th>
<th>Avg</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerds</td>
<td>78  96 83 86</td>
<td>85.75</td>
<td>.2666</td>
</tr>
<tr>
<td>Noobs</td>
<td>14  29 73 58 71</td>
<td>49.00</td>
<td>.3333</td>
</tr>
<tr>
<td>Normals</td>
<td>56  69 88 73 49 81</td>
<td>69.33</td>
<td>.4000</td>
</tr>
</tbody>
</table>

class average = \( \frac{1004}{15} = 66.9333 \)

\[ 85.75 \times .2666 + 49 \times .3333 + 69.33 \times .4 = 66.93 \]
Complexity

Quicksort average case:

Let $T(n)$ denote the average case time for Quicksort

$$T(n) = (T(0)+T(n-1)+n)Pr(\text{pivot at position 0}) +$$
$$ (T(1)+T(n-2)+n)Pr(\text{pivot at position 1}) +$$
$$ (T(2)+T(n-3)+n)Pr(\text{pivot at position 2}) +$$

... 
$$ (T(n-1)+T(0)+n)Pr(\text{pivot at position } n-1)$$

But $Pr(\text{pivot at position } i) = 1/n$ for all $i$

So

$$T(n) = (2/n) \sum_{0 \leq i < n} T(i) + n$$
Complexity

QuickSort average case:

\[ T(n) = \frac{2}{n} \sum_{0 \leq i < n} T(i) + n \]

\[ nT(n) = 2 \sum_{0 \leq i < n} T(i) + n^2 \]

\[ nT(n) - (n-1)T(n-1) = n^2 - (n-1)^2 + 2T(n) = 2n - 1 + 2T(n) \]

\[ (n-2)T(n) = 2n + (n-1)T(n-1) - 1 \]

\[ T(n) = ((n-1)/(n-2))T(n-1) + (2n-1)/(n-2) \]

\[ T(1) = 1 \]

\[ T(2) = 1 \]

\[ T(3) = 5 + 2T(2) = 7 \]

\[ T(4) = 7/2 + (3/2)T(3) = 14 \]

\[ \ldots \]

\[ T(n) = n\log(n) \]
Complexity – Pattern Matching

Find first occurrence of string \( y \) in \( x \)

\[
x: \quad \text{abaabaabbaab} \\
y: \quad \text{aabbaaab}
\]
Complexity – Pattern Matching

Find first occurrence of string y in x

x:  abaabaabbaab
y:  aabbaab
Find first occurrence of string $y$ in $x$

$x$: abaabaabbaab
$y$: aabbaab
Find first occurrence of string y in x

\[ x: \text{abaabaabbaab} \]
\[ y: \text{aabbaab} \]
Complexity – Pattern Matching

Find first occurrence of string \( y \) in \( x \)

\[
\begin{align*}
\text{x:} & \quad \text{abaabaabbaab} \\
\text{y:} & \quad \text{aabbaab}
\end{align*}
\]
Find first occurrence of string \( y \) in \( x \)

\[
\begin{align*}
x & : \text{ abaabaabbaaab } \\
y & : \text{ aabbaab }
\end{align*}
\]
Complexity – Pattern Matching

Find first occurrence of string y in x

\[ x: \text{abaabaabbaab} \]
\[ y: \text{aabbaab} \]
Complexity – Pattern Matching

Find first occurrence of string $y$ in $x$

$x$: abaabaabbaab
$y$: aabbaab
Find first occurrence of string $y$ in $x$

$x$: abaabaabbaaab

$y$: aabbaab
Find first occurrence of string $y$ in $x$

$x$: abaabaabbaab
$y$: aabbaaab
Complexity – Pattern Matching

Find first occurrence of string y in x

x: abaabaabbaab
y: aabbaab
Complexity – Pattern Matching

Find first occurrence of string $y$ in $x$
Complexity – Amortized Analysis

Find first occurrence of string $y$ in $x$

\[ x: \quad \text{abaabaabbaab} \]
\[ y: \quad \text{aabbaab} \]
Complexity – Amortized Analysis

Find first occurrence of string $y$ in $x$

$x$: abaabaabbaab
$y$: aabbaab
Find first occurrence of string y in x

x:  abaabaabbaab
y:  aabbaab
Find first occurrence of string \( y \) in \( x \)

\[
\begin{align*}
\text{x:} & \quad \text{abaabaabbaab} \\
\text{y:} & \quad \text{aabbaaab}
\end{align*}
\]
Find first occurrence of string $y$ in $x$

\[
\begin{align*}
x & : \text{ abaabaabbaab } \\
y & : \text{ aabbaab }
\end{align*}
\]
Complexity – Amortized Analysis

Find first occurrence of string y in x

x: abaabaabbaab
y: aabbaab
Find first occurrence of string y in x

x: abaabaabbaab
y: aabbaab
Complexity – Amortized Analysis

Find first occurrence of string \( y \) in \( x \)

\( x: \) abaabaabbaab
\( y: \) aabbaab
Complexity – Amortized Analysis

Find first occurrence of string y in x

x: abaabaabbaab
y: aabbaab
Complexity – Amortized Analysis

Find first occurrence of string $y$ in $x$

$x$: abaabaabbaab
$y$: aabbaab
Complexity – Amortized Analysis

Find first occurrence of string y in x

x: abaabaabbaab
y: aabbaab
Find first occurrence of string $y$ in $x$

$x$: abaabaabbaaab
$y$: aabbaaab
Complexity – Amortized Analysis

Find first occurrence of string $y$ in $x$

$x$: abaabaabbaab
$y$: aabbaab
Find first occurrence of string $y$ in $x$

$x$: abaabaabbaab
$y$: aabbaab
Complexity – Amortized Analysis

Find first occurrence of string $y$ in $x$

$x$: abaabaabbaab
$y$: aabbaaab
Complexity – Amortized Analysis
Find first occurrence of string $y$ in $x$

$x$: abaabaabbbbaaabbaab
$y$: aabbaab
Find first occurrence of string $y$ in $x$

$x$: abaabaabbbbaabbaaabaab

$y$: aabbaab
void makeFailureFunction (char *y, int l) {
    int *f = new int[l+1];
    f[0] = f[1] = 0;
    for (int j=2 ; j < l+1 ; j++) {
        int i = f[j-1];
        while (y[j] != y[i+1] && i > 0) i = f[i];
        if (y[j] != y[i+1] && i == 0) f[j] = 0;
        else f[j] = i+1;
    }
    return f;
}

What is the complexity of this algorithm in terms of l?
void makeFailureFunction (char *y, int l) {
    int *f = new int[l+1];
    f[0] = f[1] = 0;
    for (int j=2 ; j < l+1 ; j++) {
        int i = f[j-1];
        while (y[j] != y[i+1] && i > 0) i = f[i];
        if (y[j] != y[i+1] && i == 0) f[j] = 0;
        else f[j] = i+1;
    }
    return f;
}

What is the complexity of this algorithm in terms of l?

**Answer:** $O(l)$

Cost of while is number of times $i$ is decremented in $i=f[i]$

Only way $i$ incremented: $f[j]=i+1$, $j++$, then $i=f[j-1]$

Hence $i$ decremented in while at most $l$ times