Why Do Engineers Need Math (and Matrices)?
Why Do Engineers Need Math (and Matrices)?

In the beginning there was light...
Why Do Engineers Need Math (and Matrices)?

In the beginning there was light
and 100000000000000000000... interacting particles!
Why Do Engineers Need Math (and Matrices)?

In the beginning there was light and 100000000000000000000... interacting particles!

How do you design a bridge, circuit, rocket if you have to worry about all those particles?
Why Do Engineers Need Math (and Matrices)?

In the beginning there was light and $100000000000000000000\ldots$ interacting particles!

How do you design a bridge, circuit, rocket if you have to worry about all those particles?

You can’t! But a long time ago people figured out that the interactions are so predictable and uniform that they can be described abstractly using mathematics!
Why Do Engineers Need Math (and Matrices)?

In the beginning there was light and 10000000000000000000... interacting particles!

How do you design a bridge, circuit, rocket if you have to worry about all those particles?

You can’t! But a long time ago people figured out that the interactions are so predictable and uniform that they can be described abstractly using mathematics!

So engineers use mathematics to *model* the real world abstractly.
Why Do Engineers Need Math (and Matrices)?

In the beginning there was light and 100000000000000000000... interacting particles!

How do you design a bridge, circuit, rocket if you have to worry about all those particles?

You can’t! But a long time ago people figured out that the interactions are so predictable and uniform that they can be described abstractly using mathematics!

So engineers use mathematics to model the real world abstractly. In other words - engineering is not hands on - it is MINDS ON.
Why Do Engineers Need Math (and Matrices)?

Example:

Define *voltage* as some mysterious force which we do not really understand very well, *current* as a rate of “flow” of some mysterious particles called *electrons*, and *resistance* as a property of imperfect materials which tends to restrict current.

A long time ago somebody figured out how to measure these phenomena and observed, via experiment, that

\[
\text{current} = \frac{\text{voltage}}{\text{resistance}}
\]

so it was called a law (Ohm’s law).
Why Do Engineers Need Math (and Matrices)?

Laws are great! 😊

From Ohm’s law we can build circuits!
From Newton’s laws we can build rockets!
There are laws for building bridges!
There are laws for remediating a polluted site!
There is conservation of energy!
Why Do Engineers Need Math (and Matrices)?

Laws are great! 😊

From Ohm’s law we can build circuits!
From Newton’s laws we can build rockets!
There are laws for building bridges!
There are laws for remediating a polluted site!
There is conservation of energy!

But Laws have side effects 😧

They aren’t laws - just first order approximations.
The context in which they are used must be understood.
Belief in laws inhibits creative advances.
Why Do Engineers Need Math (and Matrices)?

So, where does the math come in?

Laws are described as mathematical models.
Why Do Engineers Need Math (and Matrices)?

So, where does the math come in?

Laws are described as mathematical models.

We can use math operations to manipulate the models and get answers to engineering questions.
Why Do Engineers Need Math (and Matrices)?

So, where does the math come in?

Laws are described as mathematical models.

We can use math operations to manipulate the models and get answers to engineering questions.

Useful operations: arithmetic, derivatives, integrals, matrix multiplication, eigenvalues and eigenvectors, probability, statistics.
Why Do Engineers Need Matrices?

Example 1: Visualize Contamination Plume (Env Eng)
Why Do Engineers Need Matrices?

Example 1: Visualize Contamination Plume (Env Eng)
Example 1: Visualize Contamination Plume (Env Eng)
But how do we get these nice pictures from just a few well logs?
Example 1: Visualize Contamination Plume (Env Eng)
Overlay a grid, find values at each grid point.
Many ways: Inverse-distance-squared, Kriging, etc.
Why Do Engineers Need Matrices?

Example 1: Visualize Contamination Plume (Env Eng)

Once values are set for grid points, interpolate over edge of four edges of cell for contour value.

```
<table>
<thead>
<tr>
<th>5.78</th>
<th>6.47</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6.82</td>
<td>7.51</td>
</tr>
</tbody>
</table>
```
Example 1: Visualize Contamination Plume (Env Eng)
Once values are set for grid points, interpolate over edge of four edges of cell for contour value.
Why Do Engineers Need Matrices?

Example 1: Visualize Contamination Plume (Env Eng)
Now connect all the straight lines from interpolation to get recognizable contours.
Why Do Engineers Need Matrices?

Example 2: Predict Plume Movement
Given aquifer pressure, etc., and log data, predict the movement of the plume over time.

\[
R_f \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - V_w \frac{\partial C}{\partial x}
\]

Boundary and Initial Conditions:

\[
C(x, t = 0) = 0 \quad \frac{\partial C}{\partial x}(x = \infty, t) = 0
\]

\[
C(x = 0, 0 < t \leq T) = C_0 \quad C(x = 0, t > T) = 0
\]

where \(R_f \) is a retardation coefficient, \(C \) is concentration of contaminant, \(D \) is the dispersion coefficient, and \(V_w \) is the velocity of the groundwater (one dimensional flow).
Example 2: Predict Plume Movement

2D: no symbolic solution - approximate over the grid

dby2 = b[i]+b[i-h_size];
ddX = dX/b[i];
ddY = dY/b[i];
X = 2*i;
Y = X+1;
s1 = (d[k]+d[k+3])*(un[i+1]-un[i])/dx;
s2 = (d[k+2]+d[k+5])*(un[i+h_size+1] - un[i-h_size+1]
 + un[i+h_size] - un[i-h_size])/(2.0*dy);
s3 = (d[k]+d[k-3])*(un[i]-un[i-1])/dx;
s4 = (d[k+2]+d[k-1])*(un[i+h_size] - un[i-h_size]
 + un[i+h_size-1] - un[i-h_size-1])/(2.0*dy);
s += ddX*(dbx1*(s1+s2) - dbx2*(s3+s4))/4.0;
s1 = (d[k+j+2]+d[k+2])*(un[i+h_size+1]-un[i+h_size-1]
 +un[i+1]-un[i-1])/(2.0*dx);
s2 = (d[k+j+1]+d[k+1])*(un[i+h_size] - un[i])/dy;
s3 = (d[k+2]+d[k-j+2])*(un[i+1]-un[i-1]+un[i-h_size+1]
 -un[i-h_size-1])/(2.0*dx);
s4 = (d[k+1]+d[k-j+1])*(un[i] - un[i-h_size])/dy;
s += ddY*(dby1*(s1+s2) - dby2*(s3+s4))/4.0;
une = (b[i]+b[i-1])*(un[i] - un[i-1])/2.;
unn = (b[i] + b[i-h_size])*(un[i] - un[i-h_size])/2.;
flow = f[i]*dt*un[i];
s += -flow/b[i] - v[X]*ddX*une - v[Y]*ddY*unn;
unp1[i] = s;
Why Do Engineers Need Matrices?

Example 3: Remediation of Site
Why Do Engineers Need Matrices?

Example 4: Classification (most Eng. disciplines)

<table>
<thead>
<tr>
<th>Data Point</th>
<th>Class</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>12.4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10.2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>11.6</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>11.4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Determine the coefficients of

\[Av + Bw + Cx + Dy + Ez \]

that maximize the number of correctly classified points
Why Do Engineers Need Matrices?

Example 4: Classification (most Eng. disciplines)

Simple illustration in two parameters
Why Do Engineers Need Matrices?

Example 4: Classification (most Eng. disciplines)
Simple illustration in two parameters
Example 5: Decision Analysis/Optimization (all)

Schedule a conference

1. \(t \) periods
2. \(r \) parallel sessions
3. \(j^{th} \) room has capacity \(R_j \)
4. \(n \) speakers - \(i^{th} \) gives \(L_i \) lectures
5. \(m \) attendees - each with \(p \) preferences

Choose a schedule so that all attendees hear their preferred speakers
Example 5: Decision Analysis/Optimization (all)

Define $t \cdot r \cdot n$ variables

$$S_{i,j,k} = \begin{cases}
1 & \text{if speaker } i \text{ is scheduled for room } j \text{ in period } k \\
0 & \text{otherwise}
\end{cases}$$

No two speakers speak in the same room at the same time.

$$S_{1,j,k} + S_{2,j,k} + S_{3,j,k} + \ldots + S_{n,j,k} \leq 1$$

i^{th} speaker gives L_i lectures.

$$S_{i,1,1} + \ldots + S_{i,1,t} + S_{i,2,1} + \ldots + S_{i,2,t} + \ldots + S_{i,r,1} + \ldots + S_{i,r,t} = L_i$$
Example 5: Decision Analysis/Optimization (all)

Problem is an example of matrix multiplication

\[
\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{pmatrix}
\leq
\begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
\end{pmatrix}
\]

where \(x_{k+(j-1)*t+(i-1)*t*r}\) corresponds to \(S_{i,j,k}\)
Why Do Engineers Need Matrices?

Example 5: Decision Analysis/Optimization (all)

Programming the solution in MATLAB

```matlab
A = [1 1 0 0 ; 0 1 1 0 ; 0 0 1 1 ; 1 0 0 1 ; 0 1 1 0];
b = [1 ; 1 ; 1 ; 1 ; 1];
Aeq = [1 0 1 0 ; 0 1 0 1 ; 0 1 1 0];
beq = [1 ; 1 ; 2];
H = [-1 0 0 0 ; 0 -1 0 0 ; 0 0 -1 0 ; 0 0 0 -1];
f = [1 1 1 1];
lb = [0 ; 0 ; 0 ; 0];
ub = [1 ; 1 ; 1 ; 1];
x = quadprog(H,f,A,b,Aeq,beq,lb,ub);
```